Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Structural and functional asymmetry of lateral Heschl's gyrus reflects pitch perception preference

Abstract

The relative pitch of harmonic complex sounds, such as instrumental sounds, may be perceived by decoding either the fundamental pitch (f0) or the spectral pitch (fSP) of the stimuli. We classified a large cohort of 420 subjects including symphony orchestra musicians to be either f0 or fSP listeners, depending on the dominant perceptual mode. In a subgroup of 87 subjects, MRI (magnetic resonance imaging) and magnetoencephalography studies demonstrated a strong neural basis for both types of pitch perception irrespective of musical aptitude. Compared with f0 listeners, fSP listeners possessed a pronounced rightward, rather than leftward, asymmetry of gray matter volume and P50m activity within the pitch-sensitive lateral Heschl's gyrus. Our data link relative hemispheric lateralization with perceptual stimulus properties, whereas the absolute size of the Heschl's gyrus depends on musical aptitude.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Psychometric testing and grouping.
Figure 2: Neural basis of fundamental and spectral pitch perception.
Figure 3: Averaged landmarks of 87 auditory cortices (top view, standard stereotaxic coordinates34; line width of the dashed landmarks corresponds to averaged s.e.m.).
Figure 4: Individual HG morphology.
Figure 5: Pitch perception preference and neural asymmetries.

References

  1. Smoorenburg, G.F. Pitch perception of two-frequency stimuli. J. Acoust. Soc. Am. 48, 924–942 (1970).

    CAS  Article  Google Scholar 

  2. Laguitton, V., Demany, L., Semal, C. & Liégeois-Chauvel, C. Pitch perception: a difference between right-and left-handed listeners. Neuropsychologia 36, 201–207 (1998).

    CAS  Article  Google Scholar 

  3. von Helmholtz, H.L.F. On the Sensations of Tone (Longmans, London, 1885).

    Google Scholar 

  4. Terhardt, E. Pitch, consonance and harmony. J. Acoust. Soc. Am. 55, 1061–1069 (1974).

    CAS  Article  Google Scholar 

  5. Wessinger, C.M. et al. Hierarchical organization of the human auditory cortex revealed by functional magnetic resonance imaging. J. Cogn. Neurosci. 13, 1–7 (2001).

    CAS  Article  Google Scholar 

  6. Langner, G. Periodicity coding in the auditory system. Hear. Res. 60, 115–142 (1992).

    CAS  Article  Google Scholar 

  7. Griffiths, T.D., Büchel, C., Frackowiak, R.S.J. & Patterson, R.D. Analysis of temporal structure in sound by the human brain. Nat. Neurosci. 1, 422–427 (1998).

    CAS  Article  Google Scholar 

  8. Gutschalk, A., Patterson, R.D., Rupp, A., Uppenkamp, S. & Scherg, M. Sustained magnetic fields reveal separate sites for sound level and temporal regularity in human auditory cortex. Neuroimage 15, 207–216 (2002).

    Article  Google Scholar 

  9. Formisano, E. et al. Mirror-symmetric tonotopic maps in human primary auditory cortex. Neuron 40, 859–869 (2003).

    CAS  Article  Google Scholar 

  10. Pantev, C., Hoke, M., Lütkenhöner, B. & Lehnerz, K. Tonotopic organization of the auditory cortex: pitch versus frequency representation. Science 246, 486–488 (1989).

    CAS  Article  Google Scholar 

  11. Seifritz, E. et al. Spatiotemporal pattern of neural processing in the human auditory cortex. Science 297, 1706–1708 (2002).

    CAS  Article  Google Scholar 

  12. Griffiths, T.D. Functional imaging of pitch analysis. Ann. NY Acad. Sci. 999, 40–49 (2003).

    Article  Google Scholar 

  13. Janata, P. et al. The cortical topography of tonal structures underlying western music. Science 298, 2167–2170 (2002).

    CAS  Article  Google Scholar 

  14. Hall, D. et al. Spectral and temporal processing in human auditory cortex. Cereb. Cortex 12, 140–149 (2002).

    Article  Google Scholar 

  15. Penagos, H., Melcher, J.R. & Oxenham, A.J. A neural representation of pitch salience in nonprimary human auditory cortex revealed with functional magnetic resonance imaging. J. Neurosci. 24, 6810–6815 (2004).

    CAS  Article  Google Scholar 

  16. Patterson, R.D., Uppenkamp, S., Johnsrude, I.S. & Griffiths, T.D. The processing of temporal pitch and melody information in auditory cortex. Neuron 36, 767–776 (2002).

    CAS  Article  Google Scholar 

  17. Warren, J.D., Uppenkamp, S., Patterson, R. & Griffiths, T.D. Separating pitch chroma and pitch height in the human brain. Proc. Natl. Acad. Sci. USA 100, 10038–10042 (2003).

    CAS  Article  Google Scholar 

  18. Johnsrude, I.S., Penhune, V.B. & Zatorre, R.J. Functional specificity in the right human auditory cortex for perceiving pitch direction. Brain 123, 155–163 (2000).

    Article  Google Scholar 

  19. Warren, J.D. & Griffiths, T.D. Distinct mechanisms for processing spatial sequences and pitch sequences in the human auditory brain. J. Neurosci. 23, 5799–5804 (2003).

    CAS  Article  Google Scholar 

  20. Griffiths, T.D., Uppenkamp, S., Johnsrude, I., Josephs, O. & Patterson, R.D. Encoding of the temporal regularity of sound in the human brainstem. Nat. Neurosci. 4, 633–637 (2001).

    CAS  Article  Google Scholar 

  21. Tervaniemi, M. Lateralization of auditory-cortex functions. Brain Res. Brain Res. Rev. 43, 231–246 (2003).

    Article  Google Scholar 

  22. Devlin, J.T. et al. Functional asymmetry for auditory processing in human primary auditory cortex. J. Neurosci. 23, 11516–11522 (2003).

    CAS  Article  Google Scholar 

  23. Zatorre, R. & Belin, P. Spectral and temporal processing in human auditory cortex. Cereb. Cortex 11, 946–953 (2001).

    CAS  Article  Google Scholar 

  24. Zatorre, R.J., Belin, P. & Penhune, V. Structure and function of auditory cortex: music and speech. Trends Cogn. Sci. 6, 37–46 (2002).

    Article  Google Scholar 

  25. Boemio, A., Fromm, S. & Poeppel, D. Hierarchical and asymmetric temporal sensitivity in human auditory cortices. Nat. Neurosci. 8, 389–395 (2005).

    CAS  Article  Google Scholar 

  26. Galuske, R.A., Schlote, W., Bratzke, H. & Singer, W. Interhemispheric asymmetries of the modular structure in human temporal cortex. Science 289, 1946–1949 (2000).

    CAS  Article  Google Scholar 

  27. Schneider, P. et al. Morphology of Heschl's gyrus reflects enhanced activation in the auditory cortex of musicians. Nat. Neurosci. 5, 688–694 (2002).

    CAS  Article  Google Scholar 

  28. Sluming, V. et al. Voxel-based morphometry reveals increased gray matter density in Broca's area in male symphony orchestra musicians. Neuroimage 17, 1613–1622 (2002).

    Article  Google Scholar 

  29. Rademacher, J. et al. Probabilistic mapping and volume measurement of human primary auditory cortex. Neuroimage 13, 669–683 (2001).

    CAS  Article  Google Scholar 

  30. Morosan, P. et al. Human primary auditory cortex: cytoachitectonic subdivisions and mapping into a spatial reference system. Neuroimage 13, 684–701 (2001).

    CAS  Article  Google Scholar 

  31. Penhune, V.B., Zatorre, R.J., MacDonald, J.D. & Evans, A.C. Interhemispheric anatomical differences in human primary auditory cortex: probabilistic mapping and volume measurement from magnetic resonance scans. Cereb. Cortex 6, 661–672 (1996).

    CAS  Article  Google Scholar 

  32. Leonard, C.M., Puranik, C., Kuldau, J.M. & Lombardino, L.J. 1998. Normal variation in the frequency and location of human auditory cortex. Heschl's gyrus: where is it? Cereb. Cortex 8, 397–406 (1998).

    CAS  Article  Google Scholar 

  33. Pantev, C. et al. Increased auditory cortical representation in musicians. Nature 392, 811–813 (1998).

    CAS  Article  Google Scholar 

  34. Talairach, J. & Tournoux, P. Co-planar Stereotaxic Atlas of the Human Brain (Thieme, New York, 1988).

    Google Scholar 

  35. Westbury, C.F., Zatorre, R.J. & Evans, A.C. Quantifying variability in the planum temporale: a probability map. Cereb. Cortex 9, 392–405 (1999).

    CAS  Article  Google Scholar 

  36. Ritter, S., Dosch, H.G., Specht, H.J. & Rupp, A. Neuromagnetic responses reflect the temporal pitch change of regular interval sounds. Neuroimage (in the press).

  37. Penhune, V.B., Cismaru, R., Dorsaint-Pierre, R., Petitto, L. & Zatorre, R. The morphometry of auditory cortex in the congenitally deaf measured using MRI. Neuroimage 20, 1215–1225 (2003).

    Article  Google Scholar 

  38. Galaburda, A. & Sanides, F. Cytoarchitectonic organization of the human auditory cortex. J. Comp. Neurol. 190, 597–610 (1980).

    CAS  Article  Google Scholar 

  39. Wallace, M.N., Johnston, P.W. & Palmer, A.R. Histochemical identification of cortical areas in the auditory region of the human brain. Exp. Brain Res. 143, 499–508 (2002).

    CAS  Article  Google Scholar 

  40. Pfeifer, R.A. Pathologie der Hörstrahlung und der corticalen Hörsphäre. in Handbuch der Neurologie Vol. 6 (eds. Bumke, O. & Förster, O.) 533–626 (Springer, Berlin, 1936).

    Google Scholar 

  41. Gordon, E.E. Introduction to Research and the Psychology of Music (GIA, Chicago, 1998).

    Google Scholar 

  42. Plomp, R. Aspects of Tone Sensation (Academic, London, 1976).

    Google Scholar 

  43. Meyer, A. The search for a morphological substrate in the brains of eminent persons including musicians: a historical review. in Music and the Brain (eds. Critchley, M. & Henson, R.A.) 255–281. (Heinemann, London, 1977).

    Chapter  Google Scholar 

  44. Rupp, A., Gutschalk, A., Uppenkamp, S. & Scherg, M. Middle latency auditory-evoked fields reflect psychoacoustic gap detection thresholds in human listeners. J. Neurophysiol. 92, 2239–2247 (2004).

    Article  Google Scholar 

  45. Galaburda, A.M., Le May, M. & Kemper, T.L. Right-left asymmetries in the brain. Structural differences between the hemispheres may underlie cerebral dominance. Science 199, 852–856 (1978).

    CAS  Article  Google Scholar 

  46. Schlaug, G., Jäncke, L., Huang, Y. & Steinmetz, H. In vivo evidence of structural brain asymmetry in musicians. Science 267, 699–701 (1995).

    CAS  Article  Google Scholar 

  47. Münte, T.F., Kohlmetz, C., Nager, W. & Altenmüller, E. Superior auditory spatial tuning in conductors. Nature 409, 580 (2001).

    Article  Google Scholar 

  48. Gaser, C. & Schlaug, G. Brain structures differ between musicians and non-musicians. J. Neurosci. 23, 9240–9245 (2003).

    CAS  Article  Google Scholar 

  49. Joliveau, E., Smith, J. & Wolfe, J. Tuning of vocal tract resonance by sopranos. Nature 427, 116 (2004).

    CAS  Article  Google Scholar 

  50. Belin, P., Zatorre, R.J. & Lafaille, P. Voice-selective areas in human auditory cortex. Nature 403, 309–312 (2000).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank K. Sartor for providing the 3D-MRI in Heidelberg, the radiographic staff at MARIARC for assistance with MRI data acquisition in Liverpool and E. Hofmann (Music Academy, Basel); D. Geller, R. Schmitt and T. van der Geld (University of Music and Performing Arts, Mannheim); C. Klein (Institute of Music Pedagogy, Halle) and D. Schmidt (Conservatory of Music and Performing Arts, Stuttgart) for assistance with collecting the psychometric data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Schneider.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Schneider, P., Sluming, V., Roberts, N. et al. Structural and functional asymmetry of lateral Heschl's gyrus reflects pitch perception preference. Nat Neurosci 8, 1241–1247 (2005). https://doi.org/10.1038/nn1530

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1530

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing