Regret and its avoidance: a neuroimaging study of choice behavior

Abstract

Human decisions can be shaped by predictions of emotions that ensue after choosing advantageously or disadvantageously. Indeed, anticipating regret is a powerful predictor of future choices. We measured brain activity using functional magnetic resonance imaging (fMRI) while subjects selected between two gambles wherein regret was induced by providing information about the outcome of the unchosen gamble. Increasing regret enhanced activity in the medial orbitofrontal region, the anterior cingulate cortex and the hippocampus. Notably, across the experiment, subjects became increasingly regret-aversive, a cumulative effect reflected in enhanced activity within medial orbitofrontal cortex and amygdala. This pattern of activity reoccurred just before making a choice, suggesting that the same neural circuitry mediates direct experience of regret and its anticipation. These results demonstrate that medial orbitofrontal cortex modulates the gain of adaptive emotions in a manner that may provide a substrate for the influence of high-level emotions on decision making.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Experimental design.
Figure 2: Activity at outcome is related to win and loss.
Figure 3: The effect of the unobtained outcome: counterfactual processing of value.
Figure 4: Regret and relief.
Figure 5: Activity at choice: learning from the experience of regret.

References

  1. 1

    Roese, N.J. & Olson, J.M. What Might Have Been: The Social Psychology of Counterfactual Thinking (Erlbaum, Mahwah, New Jersey, USA, 1995).

    Google Scholar 

  2. 2

    Byrne, R.M.J. Mental models and counterfactual thinking. Trends Cogn. Sci. 6, 426–445 (2002).

    Article  Google Scholar 

  3. 3

    Kahneman, D. & Tversky, A. The psychology of preferences. Sci. Am. 246, 136–142 (1982).

    Article  Google Scholar 

  4. 4

    Kahneman, D. & Miller, D. Norm theory: comparing reality to its alternatives. Psychol. Rev. 93, 136–153 (1986).

    Article  Google Scholar 

  5. 5

    Mellers, B., Schwartz, A. & Ritov, I. Emotion-based choice. J. Exp. Psychol. Gen. 128, 332–345 (1999).

    Article  Google Scholar 

  6. 6

    Zeelenberg, M. & van Dijk, E. On the comparative nature of regret. in The Psychology of Counterfactual Thinking (eds. Mandel, D., Hilton D. & Catelani, P.) 147–161 (Routledge, London, 2005).

    Google Scholar 

  7. 7

    Bell, D.E. Regret in decision-making under uncertainty. Oper. Res. 30, 961–981 (1982).

    Article  Google Scholar 

  8. 8

    Loomes, G. & Sugden, R. Regret theory: an alternative theory of rational choice under uncertainty. Econ. J. 92, 805–824 (1982).

    Article  Google Scholar 

  9. 9

    Bell, D.E. Disappointment in decision making under uncertainty. Oper. Res. 33, 1–27 (1985).

    Article  Google Scholar 

  10. 10

    Loomes, G. & Sugden, R. Disappointment and dynamic inconsistency in choice under uncertainty. Rev. Econ. Stud. 53, 271–282 (1986).

    Article  Google Scholar 

  11. 11

    Zeelenberg, M. et al. Consequences of regret aversion: effects of expected feedback on risky decision making. Organ. Behav. Hum. Decis. Process. 65, 148–158 (1996).

    Article  Google Scholar 

  12. 12

    Gottfried, J.A. & Dolan, R.J. Human orbitofrontal cortex mediates extinction learning while accessing conditioned representations of value. Nat. Neurosci. 7, 1144–1152 (2004).

    CAS  Article  Google Scholar 

  13. 13

    Rolls, E.T. The orbitofrontal cortex and reward. Cereb. Cortex 10, 284–294 (2000).

    CAS  Article  Google Scholar 

  14. 14

    Tremblay, L. & Schultz, W. Relative reward preference in primate orbitofrontal cortex. Nature 398, 704–708 (1999).

    CAS  Article  Google Scholar 

  15. 15

    Elliott, R. et al. Dissociable neural responses in human reward systems. J. Neurosci. 20, 6159–6165 (2000).

    CAS  Article  Google Scholar 

  16. 16

    Kringelbach, M. & Rolls, E. The functional neuroanatomy of the human orbitofrontal cortex: evidence from neuroimaging and neuropsychology. Prog. Neurobiol. 72, 341–372 (2004).

    Article  Google Scholar 

  17. 17

    Breiter, H.C., Ahron, I., Kahneman, D., Dale, A. & Shizgal, P. Functional imaging of neural responses to expectancy and experience of monetary gains and losses. Neuron 30, 619–639 (2001).

    CAS  Article  Google Scholar 

  18. 18

    O'Doherty, J. et al. Abstract reward and punishment representations in the human orbitofrontal cortex. Nat. Neurosci. 4, 95–102 (2001).

    CAS  Article  Google Scholar 

  19. 19

    Camille, N. et al. The involvement of the orbitofrontal cortex in the experience of regret. Science 304, 1167–1170 (2004).

    CAS  Article  Google Scholar 

  20. 20

    Corlett, P.R. et al. Prediction error during retrospective revaluation of causal associations in humans: fMRI evidence in favor of an associative model of learning. Neuron 44, 877–888 (2004).

    CAS  PubMed  Google Scholar 

  21. 21

    Schultz, W., Dayan, P. & Montague, P.R. A neural substrate of prediction and reward. Science 275, 1593–1599 (1997).

    CAS  Article  Google Scholar 

  22. 22

    Miceli, M. & Castelfranchi, C. The mind and the future: The (negative) power of expectations. Theory Psychol. 12, 335–366 (2002).

    Article  Google Scholar 

  23. 23

    Peyron, R., Laurent, B. & Garcia-Larrea, L. Functional imaging of brain responses to pain. A review and meta-analysis. Neurophysiol. Clin. 30, 263–288 (2000).

    CAS  Article  Google Scholar 

  24. 24

    Gobel, S.M., Johansen-Berg, H., Behrens, T. & Rushworth, M.F.S. Response-selection-related parietal activation during number comparison. J. Cogn. Neurosci. 16, 1536–1551 (2004).

    Article  Google Scholar 

  25. 25

    Tobler, P.N., Fiorillo, C.D. & Schultz, W. Adaptive coding of reward value by dopamine neurons. Science 307, 1642–1645 (2005).

    CAS  Article  Google Scholar 

  26. 26

    Dreher, J.C., Kohn, P. & Berman, K.F. Neural coding of distinct statistical properties of reward information in humans. Cereb. Cortex (in the press).

  27. 27

    Holroyd, C.B. et al. Dorsal anterior cingulated cortex shows fMRIresponse to internal and external error signal. Nat. Neurosci. 7, 497–498 (2004).

    CAS  Article  Google Scholar 

  28. 28

    Shidara, M. & Richmond, B.J. Anterior cingulated: single neuronal signal related to degree of reward expectancy. Science 296, 1709–1711 (2002).

    Article  Google Scholar 

  29. 29

    Berns, G.S., McClure, S.M., Pagnoni, G. & Montague, P.R. Predictability modulates human brain response to reward. J. Neurosci. 21, 2793–2798 (2001).

    CAS  Article  Google Scholar 

  30. 30

    Gottfried, J.A., O'Doherty, J. & Dolan, R.J. Encoding predictive reward value in human amygdala and orbitofrontal cortex. Science 301, 1104–1107 (2003).

    CAS  Article  Google Scholar 

  31. 31

    Elliott, R., Newman, J.L., Longe, O.A. & Deakin, J.F. Differential response patterns in the striatum and orbitofrontal cortex to financial reward in humans: a parametric functional magnetic resonance imaging study. J. Neurosci. 23, 303–307 (2003).

    CAS  Article  Google Scholar 

  32. 32

    Bechara, A., Tranel, D. & Damasio, H. Characterization of the decision-making deficit of patients with ventromedial prefrontal cortex lesions. Brain 123, 2189–2202 (2000).

    Article  Google Scholar 

  33. 33

    Schoenbaum, G., Chiba, A.A. & Gallagher, M. Orbitofrontal cortex and basolateral amygdala encode experience outcomes during learning. Nat. Neurosci. 1, 155–159 (1998).

    CAS  Article  Google Scholar 

  34. 34

    Rolls, E.T., Hornak, J., Wade, D. & McGrath, J. Emotion-related learning in patients with social and emotional changes associated with frontal lobe damage. J. Neurol. Neurosurg. Psychiatry 57, 1518–1524 (1994).

    CAS  Article  Google Scholar 

  35. 35

    Dorris, M.C. & Glimcher, P.W. Activity in posterior parietal cortex is correlated with the relative subjective desirability of action. Neuron 44, 365–378 (2004).

    CAS  Article  Google Scholar 

  36. 36

    Bush, G., Phan, L. & Posner, M.I. Cognitive and emotional influences in anterior cingulate cortex. Trends Cogn. Sci. 4, 215–222 (2000).

    CAS  Article  Google Scholar 

  37. 37

    Critchley, H.D. The human cortex responds to an interoceptive challenge. Proc. Natl. Acad. Sci. USA 101, 6333–6334 (2004).

    CAS  Article  Google Scholar 

  38. 38

    Carter, C.S., Botvinick, M.M. & Cohen, J.D. The contribution of the anterior cingulate cortex to executive processes in cognition. Rev. Neurosci. 10, 49–57 (1999).

    CAS  Article  Google Scholar 

  39. 39

    Kiehl, K.A., Liddle, P.F. & Hopfinger, J.B. Error processing and the rostral anterior cingulate: an event-related fMRI study. Psychophysiology 37, 216–223 (2000).

    CAS  Article  Google Scholar 

  40. 40

    Garavan, H., Ross, T.J., Murphy, K., Roche, R.A. & Stein, E.A. Dissociable executive functions in the dynamic control of behavior: inhibition, error detection, and correction. Neuroimage 17, 1820–1829 (2002).

    CAS  Article  Google Scholar 

  41. 41

    Kerns, J.G. et al. Anterior cingulate conflict monitoring and adjustments in control. Science 303, 1023–1026 (2004).

    CAS  Article  Google Scholar 

  42. 42

    Lane, R.D. et al. Neural correlates of levels of emotional awareness. Evidence of an interaction between emotion and attention in the anterior cingulate cortex. J. Cogn. Neurosci. 10, 525–535 (1998).

    CAS  Article  Google Scholar 

  43. 43

    Phan, K.L., Liberzon, I., Welsh, R.C., Britton, J.C. & Taylor, S.F. Habituation of rostral anterior cingulate cortex to repeated emotionally salient pictures. Neuropsychopharmacology 28, 1344–1350 (2003).

    Article  Google Scholar 

  44. 44

    Critchley, H.D. et al. Activity in the human brain predicting differential heart rate responses to emotional facial expressions. Neuroimage 24, 751–762 (2005).

    Article  Google Scholar 

  45. 45

    Critchley, H.D. et al. Human cingulate cortex and autonomic control: converging neuroimaging and clinical evidence. Brain 126, 2139–2152 (2003).

    Article  Google Scholar 

  46. 46

    Deichmann, R., Gottfried, J.A., Hutton, C. & Turner, R. Optimized EPI for fMRI studies of the orbitofrontal cortex. Neuroimage 19, 430–441 (2003).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Human Frontier Science Program (RGP 56/2005), the Action Concertée Incitative, Systemes Complexes from the Centre National de la Recherche Scientifique to A.S. and G.C., the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior to M.J., a Wellcome Trust Programme Grant to R.J.D. and a Wellcome Senior Fellowship in Clinical Science to H.D.C.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Angela Sirigu or Raymond J Dolan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Figure 1

Activity at choice in partial-feedback choose (PC) condition when subjects chose minimizing future disappointment vs. maximization of expected values. (PDF 132 kb)

Supplementary Figure 2

Activity at choice in complete-feedback choose (CC) condition when subjects chose minimizing future regret vs. maximization of expected values. (PDF 130 kb)

Supplementary Figure 3

Smoothed normalized EPI images and corresponding locations in a normalized structural template image. (PDF 216 kb)

Supplementary Table 1

Pairs of gambles used in the fMRI experiment. (PDF 60 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Coricelli, G., Critchley, H., Joffily, M. et al. Regret and its avoidance: a neuroimaging study of choice behavior. Nat Neurosci 8, 1255–1262 (2005). https://doi.org/10.1038/nn1514

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing