Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Motility-associated hair-bundle motion in mammalian outer hair cells

Abstract

Mammalian hearing owes its remarkable sensitivity and frequency selectivity to a local mechanical feedback process within the cochlea. Cochlear outer hair cells (OHCs) function as the key elements in the feedback loop in which the fast somatic motility of OHCs is thought to be the source of cochlear amplification. An alternative view is that amplification arises from active hair-bundle movement, similar to that seen in nonmammalian hair cells. We measured voltage-evoked hair-bundle motions in the gerbil cochlea to determine if such movements were also present in mammalian OHCs. The OHCs showed bundle movement with peak responses of up to 830 nm. The movement was insensitive to manipulations that would normally block mechanotransduction in the stereocilia, and it was absent in neonatal OHCs and prestin-knockout OHCs. These findings suggest that the bundle movement originated in somatic motility and that somatic motility has a central role in cochlear amplification in mammals.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mechanotransducer current and hair-bundle motion of gerbil OHCs.
Figure 2: Hair-bundle motion of neonatal gerbil OHCs and mouse OHCs.
Figure 3: Hair-bundle motion measured from a stimulated OHC and an adjacent unstimulated OHC.
Figure 4: Input-output function and frequency response of hair-bundle motion.
Figure 5: Relationship between OHC somatic motility and hair-bundle motion.

Similar content being viewed by others

References

  1. Dallos, P. The active cochlea. J. Neurosci. 12, 4575–4585 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Santos-Sacchi, J. New tunes from Corti's organ: the outer hair cell boogie rules. Curr. Opin. Neurobiol. 13, 459–468 (2003).

    Article  CAS  PubMed  Google Scholar 

  3. Brownell, W.E., Bader, C.R., Bertrand, D. & de Ribaupierre, Y. Evoked mechanical responses in isolated cochlear outer hair cells. Science 227, 194–196 (1985).

    Article  CAS  PubMed  Google Scholar 

  4. Kachar, B., Brownell, W.E., Altschuler, R. & Fex, J. Electrokinetic shape changes of cochlear outer hair cells. Nature 322, 365–368 (1986).

    Article  CAS  PubMed  Google Scholar 

  5. Liberman, M.C. et al. Prestin is required for outer hair cell electromotility and the cochlear amplifier. Nature 419, 300–314 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. Hudspeth, A.J. Mechanical amplification of stimuli by hair cells. Curr. Opin. Neurobiol. 7, 480–486 (1997).

    Article  CAS  PubMed  Google Scholar 

  7. Fettiplace, R., Ricci, A.J. & Hackney, C.M. Clues to the cochlear amplifier from the turtle ear. Trends Neurosci. 24, 169–175 (2001).

    Article  CAS  PubMed  Google Scholar 

  8. Crawford, A.C. & Fettiplace, R. The mechanical properties of ciliary bundles of turtle cochlear hair cells. J. Physiol. (Lond.) 364, 359–379 (1985).

    Article  CAS  Google Scholar 

  9. Rüsch, A. & Thurm, U. Spontaneous and electrically induced movements of ampullary kinocilia and stereovilli. Hear. Res. 48, 247–263 (1990).

    Article  PubMed  Google Scholar 

  10. Martin, P. & Hudspeth, A.J. Active hair-bundle movements can amplify a hair cell's response to oscillatory mechanical stimuli. Proc. Natl. Acad. Sci. USA 96, 14306–14311 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Howard, J. & Hudspeth, A.J. (1987) Mechanical relaxation of the hair bundle mediates adaptation in mechanoelectrical transduction by the bullfrog's saccular hair cell. Proc. Natl. Acad. Sci. USA 84, 3064–3068 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Benser, M.E., Marquis, R.E. & Hudspeth, A.J. Rapid, active hair bundle movements in hair cells from the bullfrog's sacculus. J. Neurosci. 16, 5629–5643 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ricci, A.L., Crawford, A.C. & Fettiplace, R. Active hair bundle motion linked to fast transducer adaptation in auditory hair cells. J. Neurosci. 20, 7131–7142 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Assad, J.A., Hacohen, N. & Corey, D.P. Voltage dependence of adaptation and active bundle movement in bullfrog saccular hair cells. Proc. Natl. Acad. Sci. USA 86, 2918–2922 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bozovic, D. & Hudspeth, A.J. Hair-bundle movements elicited by transepithelial electrical stimulation of hair cells in the sacculus of the bullfrog. Proc. Natl. Acad. Sci. USA 100, 958–963 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gillespie, P.G. & Corey, D.P. Myosin and adaptation by hair cells. Neuron 19, 955–958 (1997).

    Article  CAS  PubMed  Google Scholar 

  17. Holt, J.R. et al. A chemical-genetic strategy implicates myosin-1c in adaptation by hair cells. Cell 108, 371–381 (2002).

    Article  CAS  PubMed  Google Scholar 

  18. Chan, D.K. & Hudspeth, A.J. Ca(2+) current-driven nonlinear amplification by the mammalian cochlea in vitro. Nat. Neurosci. 8, 149–155 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kennedy, H.J., Crawford, A.C. & Fettiplace, R. Force generation by mammalian hair bundles supports a role in cochlear amplification. Nature 433, 880–883 (2005).

    Article  CAS  PubMed  Google Scholar 

  20. Kros, C.J., Rüsch, A. & Richardson, G.P. Mechano-electrical transducer currents in hair cells of the cultured neonatal mouse cochlea. Proc. Biol. Sci. 249, 185–193 (1992).

    Article  CAS  PubMed  Google Scholar 

  21. Kennedy, H.J., Evans, M.G., Crawford, A.C. & Fettiplace, R. Fast adaptation of mechanoelectrical transducer channels in mammalian cochlear hair cells. Nat. Neurosci. 6, 832–836 (2003).

    Article  CAS  PubMed  Google Scholar 

  22. He, D.Z.Z., Jia, S.P. & Dallos, P. Mechanoelectrical transduction of outer hair cells studied in a gerbil hemicochlea. Nature 429, 766–770 (2004).

    Article  CAS  PubMed  Google Scholar 

  23. He, D.Z.Z., Evans, B.N. & Dallos, P. First appearance and development of electromotility in neonatal gerbil outer hair cells. Hear. Res. 78, 77–90 (1994).

    Article  CAS  PubMed  Google Scholar 

  24. Géléoc, G.S.G. & Holt, J.F. Developmental acquisition of sensory transduction in hair cells of the mouse inner ear. Nat. Neurosci. 6, 1019–1020 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Zheng, J. et al. Prestin is the motor protein of cochlear outer hair cells. Nature 405, 149–155 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. Cheatham, M.A., Huynh, K.H., Gao, J., Zuo, J. & Dallos, P. Cochlear function in prestin knockout mice. J. Physiol. (Lond.) 560, 821–830 (2004).

    Article  CAS  Google Scholar 

  27. Mammano, F., Kros, C.J. & Ashmore, J.F. Patch clamped responses from outer hair cells in the intact adult organ of Corti. Pflugers Arch. 430, 745–750 (1995).

    Article  CAS  PubMed  Google Scholar 

  28. Zhao, H.B. & Santos-Sacchi, J. Auditory collusion and a coupled couple of outer hair cells. Nature 399, 359–362 (1999).

    Article  CAS  PubMed  Google Scholar 

  29. Santos-Sacchi, J. Asymmetry in voltage-dependent movements of isolated outer hair cells from the organ of Corti. J. Neurosci. 9, 2954–2962 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Santos-Sacchi, J. On the frequency limit and phase of outer hair cell motility: effects of the membrane filter. J. Neurosci. 12, 1906–1916 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Richter, C.P., Evans, B.N., Edge, R. & Dallos, P. Basilar membrane vibration in the gerbil hemicochlea. J. Neurophysiol. 79, 2255–2264 (1998).

    Article  CAS  PubMed  Google Scholar 

  32. Mammano, F. & Ashmore, J.F. Reverse transduction measured in the isolated cochlea by laser Michelson interferometry. Nature 365, 838–841 (1993).

    Article  CAS  PubMed  Google Scholar 

  33. He, D.Z.Z. et al. Chick hair cells do not exhibit voltage-dependent somatic motility. J. Physiol. (Lond.) 546, 511–520 (2003).

    Article  CAS  Google Scholar 

  34. van Netten, S.M. & Kros, C.J. Gating energies and forces of the mammalian hair cell transducer channel and related hair bundle mechanics. Proc. Biol. Sci. 267, 1915–1923 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. McMullen, T.A. & Mountain, D.C. Model of dc potentials in the cochlea: effects of voltage-dependent cilia stiffness. Hear. Res. 17, 127–141 (1985).

    Article  CAS  PubMed  Google Scholar 

  36. Reuter, G., Gitter, A.H., Thürm, U. & Zenner, H.P. High frequency radial movements of the reticular lamina induced by outer hair cell motility. Hear. Res. 60, 236–246 (1992).

    Article  CAS  PubMed  Google Scholar 

  37. Dallos, P. Organ of Corti kinematics. J. Assoc. Res. Otolaryngol. 4, 416–421 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  38. He, D.Z.Z. & Dallos, P. Somatic stiffness of cochlear outer hair cells is voltage-dependent. Proc. Natl. Acad. Sci. USA 96, 8223–8228 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Neely, S.T. & Kim, D.O. A model for active elements in cochlear biomechanics. J. Acoust. Soc. Am. 79, 1472–1480 (1986).

    Article  CAS  PubMed  Google Scholar 

  40. de Boer, E. Mechanics of the cochlea: modeling efforts. in The Cochlea (eds. Dallos, P., Popper, A.N. & Fay, R.R.) 258–317 (Springer-Verlag, New York, 1996).

    Chapter  Google Scholar 

  41. Evans, B.N. & Dallos, P. Stereocilia displacement induced somatic motility of cochlear outer hair cells. Proc. Natl. Acad. Sci. USA 90, 8347–8351 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Dallos, P., Billone, M.C., Durrant, J.D., Wang, C. & Raynor, S. Cochlear inner and outer hair cells: functional differences. Science 177, 356–358 (1972).

    Article  CAS  PubMed  Google Scholar 

  43. Dallos, P. & Evans, B.N. High-frequency motility of outer hair cells and the cochlear amplifier. Science 267, 2006–2009 (1995).

    Article  CAS  PubMed  Google Scholar 

  44. Fridberger, A. et al. Organ of Corti potentials and the motion of the basilar membrane. J. Neurosci. 24, 10057–10063 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kössl, M. & Russell, I.J. The phase and magnitude of hair cell receptor potentials and frequency tuning in the guinea pig cochlea. J. Neurosci. 12, 1575–1586 (1992).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Murugasu, E. & Russell, I.J. The effect of efferent stimulation on basilar membrane displacement in the basal turn of the guinea pig cochlea. J. Neurosci. 16, 325–332 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Spector, A.A., Brownell, W.E. & Popel, A.S. Effect of outer hair cell piezoelectricity on high-frequency receptor potentials. J. Acoust. Soc. Am. 113, 453–461 (2003).

    Article  PubMed  Google Scholar 

  48. Weitzel, E.K., Tasker, R. & Brownell, W.E. Outer hair cell piezoelectricity: frequency response enhancement and resonance behavior. J. Acoust. Soc. Am. 114, 1462–1466 (2003).

    Article  PubMed  Google Scholar 

  49. He, D.Z.Z. Mechanical responses of cochlear outer hair cells. in Biophysics of the Cochlea (ed. Gummer, A.W.) 181–184 (World Scientific, Singapore, 2003).

    Chapter  Google Scholar 

  50. He, D.Z.Z. Relationship between the development of outer hair cell electromotility and efferent innervation: a study in cultured organ of Corti of neonatal gerbils. J. Neurosci. 17, 3634–3643 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants R01 DC 006496 and R21 DC 006039 to D.Z.Z.H. from the National Institutes on Deafness and Other Communicative Disorders (NIDCD). We would like to thank P. Dallos, S. Neely, M.A. Cheatham and R. Hallworth for many helpful discussions and comments on an earlier draft of the manuscript. We thank J. Zuo for providing the prestin-knockout mice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Z Z He.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Video 1

The video clip shows large hair-bundle motion of an adult gerbil OHC in response to membrane potential change. The recording was made from an OHC in the apical-turn of the cochlea. The bundle behaved as light pipes and appeared as bright V-shaped lines when focused at their tips under the bright-field illumination (the image was magnified by 1,260x). The cell was held at -70 mV under the whole-cell voltage-clamp condition. Voltage steps (200 ms in duration) were applied to the cell to depolarize and hyperpolarize the cell membrane between -150 and 10 mV from the holding potential. Three important features are apparent in the videos. The first one is the magnitude of the bundle motion. One can roughly estimate the magnitude of bundle motion of OHCs by using the reference of the diameter of each stereocilium. The diameter of stereocilium is about 200-250 nm in OHCs. So the thickness of the white “V” line is about 750 nm (3 rows of stereocilia). Note that the magnitude of bundle motion during voltage stimulation is greater than the thickness of the white “V” line. That is to say, the bundle motion of OHCs is larger than 750 nm. The second feature is the motion pattern of the bundle. One can easily see that the entire hair bundle (both the base and the tip of the bundle) is moving, along with the cuticular plate (motion of the cuticular plate is evident by the movement of the background in the video). This is very different from the ciliary rotation seen in non-mammalian hair cells. The third feature is that the bundle motion is asymmetrical with depolarization evoking larger bundle motions in the direction toward the tallest stereocilia than hyperpolarization in the opposite direction. (AVI 1659 kb)

Supplementary Video 2

Another example of hair bundle motion of an adult gerbil OHC. The recording was made from an OHC in the basal-turn region of the cochlea. (AVI 1032 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jia, S., He, D. Motility-associated hair-bundle motion in mammalian outer hair cells. Nat Neurosci 8, 1028–1034 (2005). https://doi.org/10.1038/nn1509

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1509

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing