Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Visual field maps and stimulus selectivity in human ventral occipital cortex

A Corrigendum to this article was published on 01 October 2005

Abstract

Human visual cortex is organized into distinct visual field maps whose locations and properties provide important information about visual computations. There are two conflicting models of the organization and computational role of ventral occipital visual field maps. We report new functional MRI measurements that test these models. We also present the first coordinated measurements of visual field maps and stimulus responsivity to color, objects and faces in ventral occipital cortex. These measurements support a model that includes a hemifield map, hV4, adjacent to the central field representation of ventral V3. In addition, the measurements demonstrate a cluster of visual field maps in ventral occipital cortex (VO cluster) anterior to hV4. We describe the organization and stimulus responsivity of two new hemifield maps, VO-1 and VO-2, within this cluster. The maps and stimulus responsivity support a general organization of visual cortex based on clusters of maps that serve distinct computational functions.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Ventral occipital visual field map models.
Figure 2: The data support the hV4 model.
Figure 3: The VO cluster.
Figure 4: The definitions of VO-1 and VO-2.
Figure 5: Additional examples of hV4, VO-1 and VO-2.
Figure 6: Stimulus selectivity measurement locations.
Figure 7: Stimulus selectivity measurements.
Figure 8: Summary of hV4, VO-1 and VO-2 field map properties.

Similar content being viewed by others

References

  1. Sereno, M.I., McDonald, C.T. & Allman, J.M. Analysis of retinotopic maps in extrastriate cortex. Cereb. Cortex 4, 601–620 (1994).

    Article  CAS  PubMed  Google Scholar 

  2. DeYoe, E.A. et al. Mapping striate and extrastriate visual areas in human cerebral cortex. Proc. Natl. Acad. Sci. USA 93, 2382–2386 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Dougherty, R.F. et al. Visual field representations and locations of visual areas V1/2/3 in human visual cortex. J. Vis. 3, 586–598 (2003).

    Article  PubMed  Google Scholar 

  4. Engel, S.A., Glover, G.H. & Wandell, B.A. Retinotopic organization in human visual cortex and the spatial precision of functional MRI. Cereb. Cortex 7, 181–192 (1997).

    Article  CAS  PubMed  Google Scholar 

  5. Wandell, B.A., Brewer, A.A. & Dougherty, R.F. Visual field map clusters in human cortex. Phil. Trans. R. Soc. Lond. B 360, 693–707 (2005).

    Article  Google Scholar 

  6. Hadjikhani, N., Liu, A.K., Dale, A.M., Cavanagh, P. & Tootell, R.B.H. Retinotopy and color sensitivity in human visual cortical area V8. Nat. Neurosci. 1, 235–241 (1998).

    Article  CAS  PubMed  Google Scholar 

  7. Zeki, S., McKeefry, D.J., Bartels, A. & Frackowiak, R.S. Has a new color area been discovered? Nat. Neurosci. 1, 335–336 (1998).

    Article  CAS  PubMed  Google Scholar 

  8. McKeefry, D.J. & Zeki, S. The position and topography of the human colour centre as revealed by functional magnetic resonance imaging. Brain 120, 2229–2242 (1997).

    Article  PubMed  Google Scholar 

  9. Bartels, A. & Zeki, S. The architecture of the colour centre in the human visual brain: new results and a review. Eur. J. Neurosci. 12, 172–193 (2000).

    Article  CAS  PubMed  Google Scholar 

  10. Kastner, S. et al. Modulation of sensory suppression: implications for receptive field sizes in the human visual cortex. J. Neurophysiol. 86, 1398–1411 (2001).

    Article  CAS  PubMed  Google Scholar 

  11. Malach, R., Levy, I. & Hasson, U. The topography of high-order human object areas. Trends Cogn. Sci. 6, 176–184 (2002).

    Article  PubMed  Google Scholar 

  12. Levy, I., Hasson, U., Avidan, G., Hendler, T. & Malach, R. Center-periphery organization of human object areas. Nat. Neurosci. 4, 533–539 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. Hasson, U., Levy, I., Behrmann, M., Hendler, T. & Malach, R. Eccentricity bias as an organizing principle for human high-order object areas. Neuron 34, 479–490 (2002).

    Article  CAS  PubMed  Google Scholar 

  14. Hasson, U., Harel, M., Levy, I. & Malach, R. Large-scale mirror-symmetry organization of human occipito-temporal object areas. Neuron 37, 1027–1041 (2003).

    Article  CAS  PubMed  Google Scholar 

  15. Wade, A.R., Brewer, A.A., Rieger, J.W. & Wandell, B.A. Functional measurements of human ventral occipital cortex: retinotopy and colour. Phil. Trans. R. Soc. Lond. B 357, 963–973 (2002).

    Article  Google Scholar 

  16. Tootell, R.B. & Hadjikhani, N. Where is 'dorsal V4' in human visual cortex? Retinotopic, topographic and functional evidence. Cereb. Cortex 11, 298–311 (2001).

    Article  CAS  PubMed  Google Scholar 

  17. Ejima, Y. et al. Interindividual and interspecies variations of the extrastriate visual cortex. Neuroreport 14, 1579–1583 (2003).

    Article  PubMed  Google Scholar 

  18. Baizer, J.S., Ungerleider, L.G. & Desimone, R. Organization of visual inputs to the inferior temporal and posterior parietal cortex in macaques. J. Neurosci. 11, 168–190 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Meadows, J. Disturbed perception of colours associated with localized cerebral lesions. Brain 97, 615–632 (1974).

    Article  CAS  PubMed  Google Scholar 

  20. Meadows, J.C. The anatomical basis of prosopagnosia. J. Neurol. Neurosurg. Psychiatry 37, 489–501 (1974).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Damasio, A., Yamada, T., Damasio, H., Corbett, J. & McKee, J. Central achromatopsia: behavioral, anatomic, and physiologic aspects. Neurology 30, 1064–1071 (1980).

    Article  CAS  PubMed  Google Scholar 

  22. Damasio, A.R., Damasio, H. & Van Hoesen, G.W. Prosopagnosia: anatomic basis and behavioral mechanisms. Neurology 32, 331–341 (1982).

    Article  CAS  PubMed  Google Scholar 

  23. James, T.W., Culham, J., Humphrey, G.K., Milner, A.D. & Goodale, M.A. Ventral occipital lesions impair object recognition but not object-directed grasping: an fMRI study. Brain 126, 2463–2475 (2003).

    Article  PubMed  Google Scholar 

  24. Gauthier, I., Skudlarski, P., Gore, J.C. & Anderson, A.W. Expertise for cars and birds recruits brain areas involved in face recognition. Nat. Neurosci. 3, 191–197 (2000).

    Article  CAS  PubMed  Google Scholar 

  25. Ishai, A., Ungerleider, L.G., Martin, A. & Haxby, J.V. The representation of objects in the human occipital and temporal cortex. J. Cogn. Neurosci. 12, 35–51 (2000).

    Article  PubMed  Google Scholar 

  26. Grill-Spector, K., Knouf, N. & Kanwisher, N. The fusiform face area subserves face perception, not generic within-category identification. Nat. Neurosci. 7, 555–562 (2004).

    Article  CAS  PubMed  Google Scholar 

  27. Kanwisher, N., McDermott, J. & Chun, M.M. The fusiform face area: a module in human extrastriate cortex specialized for face perception. J. Neurosci. 17, 4302–4311 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Grill-Spector, K. et al. Differential processing of objects under various viewing conditions in the human lateral occipital complex. Neuron 24, 187–203 (1999).

    Article  CAS  PubMed  Google Scholar 

  29. Epstein, R. & Kanwisher, N. A cortical representation of the local visual environment. Nature 392, 598–601 (1998).

    Article  CAS  PubMed  Google Scholar 

  30. Halgren, E. et al. Location of human face-selective cortex with respect to retinotopic areas. Hum. Brain Mapp. 7, 29–37 (1999).

    Article  CAS  PubMed  Google Scholar 

  31. Sasaki, Y. et al. Local and global attention are mapped retinotopically in human occipital cortex. Proc. Natl. Acad. Sci. USA 98, 2077–2082 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kastner, S., De Weerd, P., Desimone, R. & Ungerleider, L.G. Mechanisms of directed attention in the human extrastriate cortex as revealed by functional MRI. Science 282, 108–111 (1998).

    Article  CAS  PubMed  Google Scholar 

  33. Gattass, R., Sousa, A.P. & Gross, C.G. Visuotopic organization and extent of V3 and V4 of the macaque. J. Neurosci. 8, 1831–1845 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Boussaoud, D., Desimone, R. & Ungerleider, L.G. Visual topography of area TEO in the macaque. J. Comp. Neurol. 306, 554–575 (1991).

    Article  CAS  PubMed  Google Scholar 

  35. Van Essen, D.C. Organization of visual areas in macaque and human cerebral cortex. in The Visual Neurosciences (eds. Chalupa, L.M. & Werner, J.S.) 507–521 (Bradford Books, Boston, 2003).

    Google Scholar 

  36. Rosa, M.G. & Tweedale, R. Brain maps, great and small: lessons from comparative studies of primate visual cortical organization. Phil. Trans. R. Soc. Lond. B 360, 665–691 (2005).

    Article  Google Scholar 

  37. Zeki, S. & Bartels, A. The clinical and functional measurement of cortical (in)activity in the visual brain, with special reference to the two subdivisions (V4 and V4 alpha) of the human colour centre. Phil. Trans. R. Soc. Lond. B 354, 1371–1382 (1999).

    Article  CAS  Google Scholar 

  38. Beauchamp, M.S., Haxby, J.V., Jennings, J.E. & DeYoe, E.A. An fMRI version of the Farnsworth-Munsell 100-Hue test reveals multiple color-selective areas in human ventral occipitotemporal cortex. Cereb. Cortex 9, 257–263 (1999).

    Article  CAS  PubMed  Google Scholar 

  39. Zeki, S. et al. A direct demonstration of functional specialization in human visual cortex. J. Neurosci. 11, 641–649 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wandell, B.A., Chial, S. & Backus, B. Visualization and measurement of the cortical surface. J. Cogn. Neurosci. 12, 739–752 (2000).

    Article  CAS  PubMed  Google Scholar 

  41. Wandell, B.A., El Gamal, A. & Girod, B. Common principles of image acquisition systems and biological vision. Proc. IEEE 90, 5–17 (2002).

    Article  Google Scholar 

  42. Levy, I., Hasson, U., Harel, M. & Malach, R. Functional analysis of the periphery effect in human building related areas. Hum. Brain Mapp. 22, 15–26 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Brainard, D.H. & Colorimetry in Handbook of the Optical Society Vol. 1. (ed. Bass, M.) 26.1–26.54 (McGraw-Hill, New York, 1995).

    Google Scholar 

  44. Wandell, B.A. Foundations of Vision (Sinauer, Sunderland, MA, 1995).

    Google Scholar 

  45. Glover, G.H. & Lai, S. Self-navigated spiral fMRI: interleaved versus single-shot. Magn. Reson. Med. 39, 361–368 (1998).

    Article  CAS  PubMed  Google Scholar 

  46. Glover, G.H. Simple analytic spiral K-space algorithm. Magn. Reson. Med. 42, 412–415 (1999).

    Article  CAS  PubMed  Google Scholar 

  47. Nestares, O. & Heeger, D.J. Robust multiresolution alignment of MRI brain volumes. Magn. Reson. Med. [In Process Citation] 43, 705–715 (2000).

    Article  CAS  Google Scholar 

  48. Teo, P.C., Sapiro, G. & Wandell, B.A. Creating connected representations of cortical gray matter for functional MRI visualization. IEEE Trans. Med. Imaging 16, 852–863 (1997).

    Article  CAS  PubMed  Google Scholar 

  49. Wandell, B.A. Computational neuroimaging of human visual cortex. Annu. Rev. Neurosci. 22, 145–173 (1999).

    Article  CAS  PubMed  Google Scholar 

  50. Engel, S., Zhang, X. & Wandell, B. Colour tuning in human visual cortex measured with functional magnetic resonance imaging. Nature 388, 68–71 (1997).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Supported by National Eye Institute RO1 EY03164 and National Institute of Neurological Disorders and Stroke 5 F30 NS44759.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alyssa A Brewer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Figure 1

Spatial distribution of color, face and object responses in relation to visual field maps. (PDF 729 kb)

Supplementary Table 1

Visual field map sizes. (PDF 79 kb)

Supplementary Table 2

Talairach coordinates of visual field maps hV4, VO-1, and VO-2. (PDF 73 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brewer, A., Liu, J., Wade, A. et al. Visual field maps and stimulus selectivity in human ventral occipital cortex. Nat Neurosci 8, 1102–1109 (2005). https://doi.org/10.1038/nn1507

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1507

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing