Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Sox21 promotes the progression of vertebrate neurogenesis

Abstract

The generation of neurons constitutes the foundation of nervous system development, yet the mechanisms underlying neurogenesis are not well established. The HMG-box transcription factors Sox1, Sox2 and Sox3 (Sox1–3) have previously been shown to suppress neurogenesis by maintaining neural cells in an undifferentiated state. Here we report that another HMG-box protein, Sox21, has the opposite activity and promotes neuronal differentiation. Using genetic studies in the chick embryo, we found that Sox21 mediates this function by counteracting the activity of Sox1–3. Accordingly, the balance of Sox21 and Sox1–3 activities determines whether neural cells remain as progenitors or commit to differentiation. Proneural basic helix-loop-helix proteins are essential for the establishment of neuronal fates. We now show that proneural proteins promote neurogenesis by upregulating Sox21 expression. These data establish a key role for Sox21 in the progression of neuronal differentiation and indicate that an important role of proneural proteins is their capacity to upregulate the expression of Sox21.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Expression of Sox21 in the developing CNS.
Figure 2: Sox21 functions as a transcriptional repressor.
Figure 3: The activities of Sox21 and Sox3 are distinguished by their C-terminal regions.
Figure 4: Sox21 counterbalances the activity of Sox1–3.
Figure 5: Decreased levels of Sox21 protein inhibit neurogenesis.
Figure 6: Sox21 expression is upregulated by proneural protein activity.

Similar content being viewed by others

References

  1. Kintner, C. Neurogenesis in embryos and in adult neural stem cells. J. Neurosci. 22, 639–643 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bertrand, N., Castro, D.S. & Guillemot, F. Proneural genes and the specification of neural cell types. Nat. Rev. Neurosci. 3, 517–530 (2002).

    Article  CAS  PubMed  Google Scholar 

  3. Davis, R.L. & Turner, D.L. Vertebrate hairy and Enhancer of split related proteins: transcriptional repressors regulating cellular differentiation and embryonic patterning. Oncogene 20, 8342–8357 (2001).

    Article  CAS  PubMed  Google Scholar 

  4. Koyano-Nakagawa, N., Kim, J., Anderson, D. & Kintner, C. Hes6 acts in a positive feedback loop with the neurogenins to promote neuronal differentiation. Development 127, 4203–4216 (2000).

    CAS  PubMed  Google Scholar 

  5. Bae, S., Bessho, Y., Hojo, M. & Kageyama, R. The bHLH gene Hes6, an inhibitor of Hes1, promotes neuronal differentiation. Development 127, 2933–2943 (2000).

    CAS  PubMed  Google Scholar 

  6. Farah, M.H. et al. Generation of neurons by transient expression of neural bHLH proteins in mammalian cells. Development 127, 693–702 (2000).

    CAS  PubMed  Google Scholar 

  7. Lee, J.E. et al. Conversion of Xenopus ectoderm into neurons by NeuroD, a basic helix-loop-helix protein. Science 268, 836–844 (1995).

    Article  CAS  PubMed  Google Scholar 

  8. Ma, Q., Kintner, C. & Anderson, D.J. Identification of neurogenin, a vertebrate neuronal determination gene. Cell 87, 43–52 (1996).

    Article  CAS  PubMed  Google Scholar 

  9. Kamachi, Y., Uchikawa, M., Collignon, J., Lovell-Badge, R. & Kondoh, H. Involvement of Sox1, 2 and 3 in the early and subsequent molecular events of lens induction. Development 125, 2521–2532 (1998).

    CAS  PubMed  Google Scholar 

  10. Pevny, L.H., Sockanathan, S., Placzek, M. & Lovell-Badge, R. A role for SOX1 in neural determination. Development 125, 1967–1978 (1998).

    CAS  PubMed  Google Scholar 

  11. Uwanogho, D. et al. Embryonic expression of the chicken Sox2, Sox3 and Sox11 genes suggests an interactive role in neuronal development. Mech. Dev. 49, 23–36 (1995).

    Article  CAS  PubMed  Google Scholar 

  12. Bylund, M., Andersson, E., Novitch, B.G. & Muhr, J. Vertebrate neurogenesis is counteracted by Sox1–3 activity. Nat. Neurosci. 6, 1162–1168 (2003).

    Article  CAS  PubMed  Google Scholar 

  13. Graham, V., Khudyakov, J., Ellis, P. & Pevny, L. SOX2 functions to maintain neural progenitor identity. Neuron 39, 749–765 (2003).

    Article  CAS  PubMed  Google Scholar 

  14. Kamachi, Y., Uchikawa, M. & Kondoh, H. Pairing SOX off: with partners in the regulation of embryonic development. Trends Genet. 16, 182–187 (2000).

    Article  CAS  PubMed  Google Scholar 

  15. Uchikawa, M., Kamachi, Y. & Kondoh, H. Two distinct subgroups of Group B Sox genes for transcriptional activators and repressors: their expression during embryonic organogenesis of the chicken. Mech. Dev. 84, 103–120 (1999).

    Article  CAS  PubMed  Google Scholar 

  16. Rex, M., Uwanogho, D.A., Orme, A., Scotting, P.J. & Sharpe, P.T. cSox21 exhibits a complex and dynamic pattern of transcription during embryonic development of the chick central nervous system. Mech. Dev. 66, 39–53 (1997).

    Article  CAS  PubMed  Google Scholar 

  17. Hamburger, V. The stage series of the chick embryo. Dev. Dyn. 195, 273–275 (1992).

    Article  CAS  PubMed  Google Scholar 

  18. Fode, C. et al. The bHLH protein NEUROGENIN 2 is a determination factor for epibranchial placode-derived sensory neurons. Neuron 20, 483–494 (1998).

    Article  CAS  PubMed  Google Scholar 

  19. Roztocil, T., Matter-Sadzinski, L., Alliod, C., Ballivet, M. & Matter, J.M. NeuroM, a neural helix-loop-helix transcription factor, defines a new transition stage in neurogenesis. Development 124, 3263–3272 (1997).

    CAS  PubMed  Google Scholar 

  20. Caccamo, D.V. et al. An immunohistochemical study of neuropeptides and neuronal cytoskeletal proteins in the neuroepithelial component of a spontaneous murine ovarian teratoma. Primitive neuroepithelium displays immunoreactivity for neuropeptides and neuron-associated beta-tubulin isotype. Am. J. Pathol. 135, 801–813 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Tsuchida, T. et al. Topographic organization of embryonic motor neurons defined by expression of LIM homeobox genes. Cell 79, 957–970 (1994).

    Article  CAS  PubMed  Google Scholar 

  22. Tanabe, Y., William, C. & Jessell, T.M. Specification of motor neuron identity by the MNR2 homeodomain protein. Cell 95, 67–80 (1998).

    Article  CAS  PubMed  Google Scholar 

  23. Ericson, J. et al. Pax6 controls progenitor cell identity and neuronal fate in response to graded Shh signaling. Cell 90, 169–180 (1997).

    Article  CAS  PubMed  Google Scholar 

  24. Yokota, Y. Id and development. Oncogene 20, 8290–8298 (2001).

    Article  CAS  PubMed  Google Scholar 

  25. Dubreuil, V., Hirsch, M.R., Jouve, C., Brunet, J.F. & Goridis, C. The role of Phox2b in synchronizing pan-neuronal and type-specific aspects of neurogenesis. Development 129, 5241–5253 (2002).

    CAS  PubMed  Google Scholar 

  26. Smith, S.T. & Jaynes, J.B. A conserved region of engrailed, shared among all en-, gsc-, Nk1-, Nk2- and msh-class homeoproteins, mediates active transcriptional repression in vivo. Development 122, 3141–3150 (1996).

    CAS  PubMed  Google Scholar 

  27. Berk, A.J. et al. Mechanisms of viral activators. Cold Spring Harb. Symp. Quant. Biol. 63, 243–252 (1998).

    Article  CAS  PubMed  Google Scholar 

  28. Hannon, G.J. RNA interference. Nature 418, 244–251 (2002).

    Article  CAS  PubMed  Google Scholar 

  29. Paddison, P.J., Caudy, A.A., Bernstein, E., Hannon, G.J. & Conklin, D.S. Short hairpin RNAs (shRNAs) induce sequence-specific silencing in mammalian cells. Genes Dev. 16, 948–958 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Mizuguchi, R. et al. Combinatorial roles of olig2 and neurogenin2 in the coordinated induction of pan-neuronal and subtype-specific properties of motoneurons. Neuron 31, 757–771 (2001).

    Article  CAS  PubMed  Google Scholar 

  31. Novitch, B.G., Chen, A.I. & Jessell, T.M. Coordinate regulation of motor neuron subtype identity and pan-neuronal properties by the bHLH repressor Olig2. Neuron 31, 773–789 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. Komatsu, T. et al. Small ubiquitin-like modifier 1 (SUMO-1) modification of the synergy control motif of Ad4 binding protein/steroidogenic factor 1 (Ad4BP/SF-1) regulates synergistic transcription between Ad4BP/SF-1 and Sox9. Mol. Endocrinol. 18, 2451–2462 (2004).

    Article  CAS  PubMed  Google Scholar 

  33. Ohba, H. et al. Sox21 is a repressor of neuronal differentiation and is antagonized by YB-1. Neurosci. Lett. 358, 157–160 (2004).

    Article  CAS  PubMed  Google Scholar 

  34. Kageyama, R. & Nakanishi, S. Helix-loop-helix factors in growth and differentiation of the vertebrate nervous system. Curr. Opin. Genet. Dev. 7, 659–665 (1997).

    Article  CAS  PubMed  Google Scholar 

  35. Tajbakhsh, S., Rocancourt, D., Cossu, G. & Buckingham, M. Redefining the genetic hierarchies controlling skeletal myogenesis: Pax-3 and Myf-5 act upstream of MyoD. Cell 89, 127–138 (1997).

    Article  CAS  PubMed  Google Scholar 

  36. Ma, Q., Fode, C., Guillemot, F. & Anderson, D.J. Neurogenin1 and neurogenin2 control two distinct waves of neurogenesis in developing dorsal root ganglia. Genes Dev. 13, 1717–1728 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kim, J., Lo, L., Dormand, E. & Anderson, D.J. SOX10 maintains multipotency and inhibits neuronal differentiation of neural crest stem cells. Neuron 38, 17–31 (2003).

    Article  CAS  PubMed  Google Scholar 

  38. Beranger, F., Mejean, C., Moniot, B., Berta, P. & Vandromme, M. Muscle differentiation is antagonized by SOX15, a new member of the SOX protein family. J. Biol. Chem. 275, 16103–16109 (2000).

    Article  CAS  PubMed  Google Scholar 

  39. Schaeren-Wiemers, N. & Gerfin-Moser, A. A single protocol to detect transcripts of various types and expression levels in neural tissue and cultured cells: in situ hybridization using digoxigenin-labelled cRNA probes. Histochemistry 100, 431–440 (1993).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank H. Kondoh for Sox21 chick cDNA, and we are grateful to J. Ericson, T. Perlmann and members of the Muhr lab for discussions and comments on the manuscript. J.M. is supported by The Swedish Natural Research Council, The Swedish Foundation for Strategic Research, the Ake Wiberg Research Foundation, the Magnus Bergvall Foundation, the Jeansson Research Foundations and the Ludwig Institute for Cancer Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonas Muhr.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Id2 represses the generation of neurons but not Sox21 activity. (PDF 1070 kb)

Supplementary Fig. 2

Synergistic activity of Sox21 and Ngn2 during neurogenesis. (PDF 2333 kb)

Supplementary Fig. 3

Proposed model of a transcriptional pathway regulating neurogenesis. (PDF 814 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sandberg, M., Källström, M. & Muhr, J. Sox21 promotes the progression of vertebrate neurogenesis. Nat Neurosci 8, 995–1001 (2005). https://doi.org/10.1038/nn1493

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1493

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing