GRIP1 controls dendrite morphogenesis by regulating EphB receptor trafficking

Article metrics


The function of the multi-PDZ domain scaffold protein GRIP1 (glutamate receptor interacting protein 1) in neurons is unclear. To explore the function of GRIP1 in hippocampal neurons, we used RNA interference (RNAi) to knock down the expression of GRIP1. Knockdown of GRIP1 by small interfering RNA (siRNA) in cultured hippocampal neurons caused a loss of dendrites, associated with mislocalization of the GRIP-interacting proteins GluR2 (AMPA receptor subunit), EphB2 (receptor tyrosine kinase) and KIF5 (also known as kinesin 1; microtubule motor). The loss of dendrites by GRIP1-siRNA was rescued by overexpression of the extracellular domain of EphB2, and was phenocopied by overexpression of the intracellular domain of EphB2 and extracellular application of ephrinB-Fc fusion proteins. Neurons from EphB1-EphB2-EphB3 triple knockout mice showed abnormal dendrite morphogenesis. Disruption of the KIF5-GRIP1 interaction inhibited EphB2 trafficking and strongly impaired dendritic growth. These results indicate an important role for GRIP1 in dendrite morphogenesis by serving as an adaptor protein for kinesin-dependent transport of EphB receptors to dendrites.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: RNAi knockdown of GRIP1 impairs dendrite morphogenesis of hippocampal neurons.
Figure 2: GRIP1 is essential for the maintenance of dendrites in mature hippocampal neurons.
Figure 3: GRIP1 constructs containing PDZ456 and L2 rescue the GRIP1-siRNA phenotype.
Figure 4: Effect of GRIP1 knockdown on subcellular distribution of GluR2 and EphB2.
Figure 5: Extracellular domain of EphB2 rescues GRIP1 siRNA phenotype.
Figure 6: Abnormal dendrite morphology in hippocampal neurons deficient for EphB1, EphB2 and EphB3.
Figure 7: EphB2 accumulates in the Golgi region in the absence of GRIP1.
Figure 8: KIF5/GRIP interaction required for surface expression of GluR2 and EphB2 and dendrite morphogenesis.


  1. 1

    Hausser, M., Spruston, N. & Stuart, G.J. Diversity and dynamics of dendritic signaling. Science 290, 739–744 (2000).

  2. 2

    Dotti, C.G., Sullivan, C.A. & Banker, G.A. The establishment of polarity by hippocampal neurons in culture. J. Neurosci. 8, 1454–1468 (1988).

  3. 3

    Cline, H.T. Dendritic arbor development and synaptogenesis. Curr. Opin. Neurobiol. 11, 118–126 (2001).

  4. 4

    Hua, J.Y. & Smith, S.J. Neural activity and the dynamics of central nervous system development. Nat. Neurosci. 7, 327–332 (2004).

  5. 5

    Scott, E.K. & Luo, L. How do dendrites take their shape? Nat. Neurosci. 4, 359–365 (2001).

  6. 6

    Wong, R.O. & Ghosh, A. Activity-dependent regulation of dendritic growth and patterning. Nat. Rev. Neurosci. 3, 803–812 (2002).

  7. 7

    Miller, F.D. & Kaplan, D.R. Signaling mechanisms underlying dendrite formation. Curr. Opin. Neurobiol. 13, 391–398 (2003).

  8. 8

    Jan, Y.N. & Jan, L.Y. The control of dendrite development. Neuron 40, 229–242 (2003).

  9. 9

    Van Aelst, L. & Cline, H.T. Rho GTPases and activity-dependent dendrite development. Curr. Opin. Neurobiol. 14, 297–304 (2004).

  10. 10

    Liu, Z., Steward, R. & Luo, L. Drosophila Lis1 is required for neuroblast proliferation, dendritic elaboration and axonal transport. Nat. Cell Biol. 2, 776–783 (2000).

  11. 11

    Yu, W. et al. Depletion of a microtubule-associated motor protein induces the loss of dendritic identity. J. Neurosci. 20, 5782–5791 (2000).

  12. 12

    Dong, H. et al. GRIP: a synaptic PDZ domain-containing protein that interacts with AMPA receptors. Nature 386, 279–284 (1997).

  13. 13

    Wyszynski, M. et al. Association of AMPA receptors with a subset of glutamate receptor-interacting protein in vivo . J. Neurosci. 19, 6528–6537 (1999).

  14. 14

    Srivastava, S. et al. Novel anchorage of GluR2/3 to the postsynaptic density by the AMPA receptor-binding protein ABP. Neuron 21, 581–591 (1998).

  15. 15

    DeSouza, S., Fu, J., States, B.A. & Ziff, E.B. Differential palmitoylation directs the AMPA receptor-binding protein ABP to spines or to intracellular clusters. J. Neurosci. 22, 3493–3503 (2002).

  16. 16

    Dong, H. et al. Characterization of the glutamate receptor-interacting proteins GRIP1 and GRIP2. J. Neurosci. 19, 6930–6941 (1999).

  17. 17

    Bruckner, K. et al. EphrinB ligands recruit GRIP family PDZ adaptor proteins into raft membrane microdomains. Neuron 22, 511–524 (1999).

  18. 18

    Lin, D., Gish, G.D., Songyang, Z. & Pawson, T. The carboxyl terminus of B class ephrins constitutes a PDZ domain binding motif. J. Biol. Chem. 274, 3726–3733 (1999).

  19. 19

    Torres, R. et al. PDZ proteins bind, cluster, and synaptically colocalize with Eph receptors and their ephrin ligands. Neuron 21, 1453–1463 (1998).

  20. 20

    Wyszynski, M. et al. Interaction between GRIP and liprin-α/SYD2 is required for AMPA receptor targeting. Neuron 34, 39–52 (2002).

  21. 21

    Ye, B. et al. GRASP-1: a neuronal RasGEF associated with the AMPA receptor/GRIP complex. Neuron 26, 603–617 (2000).

  22. 22

    Takamiya, K. et al. A direct functional link between the multi-PDZ domain protein GRIP1 and the Fraser syndrome protein Fras1. Nat. Genet. 36, 172–177 (2004).

  23. 23

    Setou, M. et al. Glutamate-receptor-interacting protein GRIP1 directly steers kinesin to dendrites. Nature 417, 83–87 (2002).

  24. 24

    Bladt, F., Tafuri, A., Gelkop, S., Langille, L. & Pawson, T. Epidermolysis bullosa and embryonic lethality in mice lacking the multi-PDZ domain protein GRIP1. Proc. Natl. Acad. Sci. USA 99, 6816–6821 (2002).

  25. 25

    Hering, H. & Sheng, M. Activity-dependent redistribution and essential role of cortactin in dendritic spine morphogenesis. J. Neurosci. 23, 11759–11769 (2003).

  26. 26

    Grunwald, I.C. et al. Kinase-independent requirement of EphB2 receptors in hippocampal synaptic plasticity. Neuron 32, 1027–1040 (2001).

  27. 27

    Dalva, M.B. et al. EphB receptors interact with NMDA receptors and regulate excitatory synapse formation. Cell 103, 945–956 (2000).

  28. 28

    Takasu, M.A., Dalva, M.B., Zigmond, R.E. & Greenberg, M.E. Modulation of NMDA receptor-dependent calcium influx and gene expression through EphB receptors. Science 295, 491–495 (2002).

  29. 29

    Henderson, J.T. et al. The receptor tyrosine kinase EphB2 regulates NMDA-dependent synaptic function. Neuron 32, 1041–1056 (2001).

  30. 30

    Henkemeyer, M., Itkis, O.S., Ngo, M., Hickmott, P.W. & Ethell, I.M. Multiple EphB receptor tyrosine kinases shape dendritic spines in the hippocampus. J. Cell Biol. 163, 1313–1326 (2003).

  31. 31

    Henkemeyer, M. et al. Nuk controls pathfinding of commissural axons in the mammalian central nervous system. Cell 86, 35–46 (1996).

  32. 32

    Birgbauer, E., Cowan, C.A., Sretavan, D.W. & Henkemeyer, M. Kinase independent function of EphB receptors in retinal axon pathfinding to the optic disc from dorsal but not ventral retina. Development 127, 1231–1241 (2000).

  33. 33

    Bredt, D.S. & Nicoll, R.A. AMPA receptor trafficking at excitatory synapses. Neuron 40, 361–379 (2003).

  34. 34

    Song, I. & Huganir, R.L. Regulation of AMPA receptors during synaptic plasticity. Trends Neurosci. 25, 578–588 (2002).

  35. 35

    Kim, E. & Sheng, M. PDZ domain proteins of synapses. Nat. Rev. Neurosci. 5, 771–781 (2004).

  36. 36

    Burette, A., Wyszynski, M., Valtschanoff, J.G., Sheng, M. & Weinberg, R.J. Characterization of glutamate receptor interacting protein-immunopositive neurons in cerebellum and cerebral cortex of the albino rat. J. Comp. Neurol. 411, 601–612 (1999).

  37. 37

    Kanai, Y. et al. KIF5C, a novel neuronal kinesin enriched in motor neurons. J. Neurosci. 20, 6374–6384 (2000).

  38. 38

    Ferreira, A., Niclas, J., Vale, R.D., Banker, G. & Kosik, K.S. Suppression of kinesin expression in cultured hippocampal neurons using antisense oligonucleotides. J. Cell Biol. 117, 595–606 (1992).

  39. 39

    Horton, A.C. & Ehlers, M.D. Dual modes of endoplasmic reticulum-to-Golgi transport in dendrites revealed by live-cell imaging. J. Neurosci. 23, 6188–6199 (2003).

  40. 40

    Krijnse-Locker, J., Parton, R.G., Fuller, S.D., Griffiths, G. & Dotti, C.G. The organization of the endoplasmic reticulum and the intermediate compartment in cultured rat hippocampal neurons. Mol. Biol. Cell 6, 1315–1332 (1995).

  41. 41

    Baas, P.W., Deitch, J.S., Black, M.M. & Banker, G.A. Polarity orientation of microtubules in hippocampal neurons: uniformity in the axon and nonuniformity in the dendrite. Proc. Natl. Acad. Sci. USA 85, 8335–8339 (1988).

  42. 42

    Goldstein, L.S. & Yang, Z. Microtubule-based transport systems in neurons: the roles of kinesins and dyneins. Annu. Rev. Neurosci. 23, 39–71 (2000).

  43. 43

    Lin, S.X., Gundersen, G.G. & Maxfield, F.R. Export from pericentriolar endocytic recycling compartment to cell surface depends on stable, detyrosinated (glu) microtubules and kinesin. Mol. Biol. Cell 13, 96–109 (2002).

  44. 44

    Nakata, T. & Hirokawa, N. Microtubules provide directional cues for polarized axonal transport through interaction with kinesin motor head. J. Cell Biol. 162, 1045–1055 (2003).

  45. 45

    Wilkinson, D.G. Multiple roles of EPH receptors and ephrins in neural development. Nat. Rev. Neurosci. 2, 155–164 (2001).

  46. 46

    Kullander, K. & Klein, R. Mechanisms and functions of Eph and ephrin signalling. Nat. Rev. Mol. Cell Biol. 3, 475–486 (2002).

  47. 47

    Yamaguchi, Y. & Pasquale, E.B. Eph receptors in the adult brain. Curr. Opin. Neurobiol. 14, 288–296 (2004).

  48. 48

    Birgbauer, E., Oster, S.F., Severin, C.G. & Sretavan, D.W. Retinal axon growth cones respond to EphB extracellular domains as inhibitory axon guidance cues. Development 128, 3041–3048 (2001).

  49. 49

    Zhou, X., Suh, J., Cerretti, D.P., Zhou, R. & DiCicco-Bloom, E. Ephrins stimulate neurite outgrowth during early cortical neurogenesis. J. Neurosci. Res. 66, 1054–1063 (2001).

  50. 50

    Cowan, C.A. & Henkemeyer, M. Ephrins in reverse, park and drive. Trends Cell Biol. 12, 339–346 (2002).

Download references


We thank M. Greenberg for Eph receptor reagents, G. Banker for CD8, A. Hung for GRIP1(L732Y) and A. Akhmanova for pSuper-TRE. C.C.H. is a recipient of a long-term fellowship from Human Frontier Science Program Organization. I.M.E. and M.H. are supported by a National Institute of Mental Health grant and MH66332, respectively. M.S. is an Investigator of the Howard Hughes Medical Institute.

Author information

Correspondence to Morgan Sheng.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

MAP2 staining in GRIP1-siRNA expressing hippocampal neurons. (PDF 1440 kb)

Supplementary Fig. 2

RNAi knock-down of GRIP1 impairs dendrite morphogenesis of pyramidal neurons in hippocampal slice cultures. (PDF 667 kb)

Supplementary Fig. 3

GRIP1 is essential for the formation and growth of dendrites but not axons in developing hippocampal neurons. (PDF 590 kb)

Supplementary Fig. 4

Reduced NMDA receptor clusters in GRIP1-knockdown neurons. (PDF 757 kb)

Supplementary Fig. 5

Brefeldin A treatment: EphB2 is trapped in the Golgi apparatus in GRIP1 siRNA expressing hippocampal neurons. (PDF 978 kb)

Supplementary Methods (PDF 47 kb)

Rights and permissions

Reprints and Permissions

About this article

Further reading