Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Technical Report
  • Published:

In vivo auditory brain mapping in mice with Mn-enhanced MRI


There are currently no noninvasive imaging methods available for auditory brain mapping in mice, despite the increasing use of genetically engineered mice to study auditory brain development and hearing loss. We developed a manganese-enhanced MRI (MEMRI) method to map regions of accumulated sound-evoked activity in awake, normally behaving mice. To demonstrate its utility for high-resolution (100-μm) brain mapping, we used MEMRI to show the tonotopic organization of the mouse inferior colliculus. To test its efficacy in an experimental setting, we acquired data from mice experiencing unilateral conductive hearing loss at different ages. Larger and persistent changes in auditory brainstem activity resulted when hearing loss occurred before the onset of hearing, showing that early hearing loss biases the response toward the functional ear. Thus, MEMRI provides a sensitive and effective method for mapping the mouse auditory brainstem and has great potential for a range of functional neuroimaging studies in normal and mutant mice.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mn-enhanced MRI (MEMRI) of the mouse brain under normal conditions.
Figure 2: Brain regions were analyzed from volumetric in vivo MRI data.
Figure 3: MEMRI enhancement in brainstem auditory nuclei was altered in mice with CHL.
Figure 4: MEMRI was used to map the tonotopic organization of the mouse IC.
Figure 5: MEMRI can be used for longitudinal imaging studies.
Figure 6: MEMRI demonstrates differences in sound-evoked activity in mice experiencing CHL at distinct developmental stages.

Similar content being viewed by others


  1. Ogawa, S., Lee, T.M., Kay, A.R. & Tank, D.W. Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc. Natl. Acad. Sci. USA 87, 9868–9872 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Narita, K., Kawasaki, F. & Kita, H. Mn and Mg influxes through Ca channels of motor nerve terminals are prevented by vermapil in frogs. Brain Res. 510, 289–295 (1990).

    Article  CAS  PubMed  Google Scholar 

  3. Lin, Y. & Koretsky, A.P. Manganese ion enhanced T1-weighted MRI during brain activation: an approach to direct imaging of brain function. Magn. Reson. Med. 38, 378–388 (1997).

    Article  CAS  PubMed  Google Scholar 

  4. Duong, T.Q., Silva, A.C., Lee, S.P. & Kim, S.G. Functional MRI of calcium-dependent synaptic activity: cross correlation with CBF and BOLD measurements. Magn. Reson. Med. 43, 383–392 (2000).

    Article  CAS  PubMed  Google Scholar 

  5. Aoki, I., Naruse, S. & Tanaka, C. Manganese-enhanced magnetic resonance imaging (MEMRI) of brain activity and applications to early detection of brain ischemia. NMR Biomed. 17, 569–580 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. Pautler, R.G. & Koretsky, A.P. Tracing odor-induced activation in the olfactory bulbs of mice using manganese-enhanced magnetic resonance imaging. Neuroimage 16, 441–448 (2002).

    Article  PubMed  Google Scholar 

  7. Watanabe, T., Natt, O., Boretius, S., Frahm, J. & Michaelis, T. In vivo 3D MRI staining of mouse brain after subcutaneous application of MnCl2 . Magn. Reson. Med. 48, 852–859 (2002).

    Article  PubMed  Google Scholar 

  8. Aoki, I., Wu, Y.J., Silva, A.C., Lynch, R.M. & Koretsky, A.P. In vivo detection of neuroarchitecture in the rodent brain using manganese-enhanced MRI. Neuroimage 22, 1046–1059 (2004).

    Article  PubMed  Google Scholar 

  9. Zaim Wadghiri, Y. et al. Manganese-enhanced magnetic resonance imaging (MEMRI) of mouse brain development. NMR Biomed. 17, 613–619 (2004).

    Article  Google Scholar 

  10. Tucci, D.L., Cant, N.B. & Durham, D. Conductive hearing loss results in a decrease in central auditory system activity in the young gerbil. Laryngoscope 109, 1359–1371 (1999).

    Article  CAS  PubMed  Google Scholar 

  11. Ryugo, D.K., Willard, F.H. & Fekete, D.M. Differential afferent projections to the inferior colliculus from the cochlear nucleus in the albino mouse. Brain Res. 210, 342–349 (1981).

    Article  CAS  PubMed  Google Scholar 

  12. Sanes, D.H. & Constantine-Paton, M. The sharpening of frequency tuning curves requires patterned activity during development in the mouse. Mus musculus. J. Neurosci. 5, 1152–1166 (1985).

    Article  CAS  PubMed  Google Scholar 

  13. Romand, R. & Ehret, G. Development of tonotopy in the inferior colliculus. I. Electrophysiological mapping in house mice. Brain Res. Dev. Brain Res. 54, 221–234 (1990).

    Article  CAS  PubMed  Google Scholar 

  14. Sterbing, S.J. & Schrott-Fischer, A. Neuronal responses in the inferior colliculus of mutant mice (Bronx waltzer) with hereditary inner hair cell loss. Hear. Res. 177, 91–99 (2003).

    Article  CAS  PubMed  Google Scholar 

  15. Ehret, G. Development of absolute auditory thresholds in the house mouse (Mus musculus). J. Am. Audiol. Soc. 1, 179–184 (1976).

    CAS  PubMed  Google Scholar 

  16. Willott, J.F. & Urban, G.P. Response properties of neurons in nuclei of the mouse inferior colliculus. J. Comp. Physiol. 127, 175–184 (1978).

    Article  Google Scholar 

  17. Webster, D.B. & Webster, M. Neonatal sound deprivation affects brain stem auditory nuclei. Arch. Otolaryngol. 103, 392–396 (1977).

    Article  CAS  PubMed  Google Scholar 

  18. Sharma, A., Dorman, M.F. & Spahr, A.J. A sensitive period for the development of the central auditory system in children with cochlear implants: implications for age of implantation. Ear Hear. 23, 532–539 (2002).

    Article  PubMed  Google Scholar 

  19. Emmorey, K., Allen, J.S., Bruss, J., Schenker, N. & Damasio, H. A morphometric analysis of auditory brain regions in congenitally deaf adults. Proc. Natl. Acad. Sci. USA 100, 10049–10054 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Shnerson, A. & Pujol, R. Development: anatomy, electrophysiology, and behavior. In The Auditory Psychobiology of the Mouse (ed. Willot, J.F.) 395–425 (Charles C. Thomas, Springfield, Illinois, 1983).

  21. Hall, J.W., Jr., Grose, J.H. & Pillsbury, H.C. Long-term effects of chronic otitis media on binaural hearing in children. Arch. Otolaryngol. Head Neck Surg. 121, 847–852 (1995).

    Article  PubMed  Google Scholar 

  22. Schilder, A.G. et al. Long-term effects of otitis media with effusion on language, reading and spelling. Clin. Otolaryngol. 18, 234–241 (1993).

    Article  CAS  PubMed  Google Scholar 

  23. Pautler, R.G., Silva, A.C. & Koretsky, A.P. In vivo neuronal tract tracing using manganese-enhanced magnetic resonance imaging. Magn. Reson. Med. 40, 740–748 (1998).

    Article  CAS  PubMed  Google Scholar 

  24. Saleem, K.S. et al. Magnetic resonance imaging of neuronal connections in the macaque monkey. Neuron 34, 685–700 (2002).

    Article  CAS  PubMed  Google Scholar 

  25. Tindemans, I., Verhoye, M., Balthazart, J. & Van Der Linden, A. In vivo dynamic ME-MRI reveals differential functional responses of RA- and area X-projecting neurons in the HVC of canaries exposed to conspecific song. Eur. J. Neurosci. 18, 3352–3360 (2003).

    Article  CAS  PubMed  Google Scholar 

  26. Kalatsky, V.A. & Stryker, M.P. New paradigm for optical imaging: temporally encoded maps of intrinsic signal. Neuron 38, 529–545 (2003).

    Article  CAS  PubMed  Google Scholar 

  27. Bozza, T., McGann, J.P., Mombaerts, P. & Wachowiak, M. In vivo imaging of neuronal activity by targeted expression of a genetically encoded probe in the mouse. Neuron 42, 9–21 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. Kennedy, C. et al. Mapping of functional neural pathways by autoradiographic survey of local metabolic rate with (14C)deoxyglucose. Science 187, 850–853 (1975).

    Article  CAS  PubMed  Google Scholar 

  29. Tai, Y.C. et al. MicroPET II: design, development and initial performance of an improved microPET scanner for small-animal imaging. Phys. Med. Biol. 48, 1519–1537 (2003).

    Article  PubMed  Google Scholar 

  30. Shukakidze, A., Lazriev, I. & Mitagvariya, N. Behavioral impairments in acute and chronic manganese poisoning in white rats. Neurosci. Behav. Physiol. 33, 263–267 (2003).

    Article  CAS  PubMed  Google Scholar 

Download references


This research was supported by US National Institutes of Health grants NS38461 and DC06892 (D.H.T.). We thank A. Joyner and G. Fishell (Skirball Institute, NYU School of Medicine) for critical review of this paper. We also thank C. Moreno and D. Rubin for technical assistance in the initial stages of this project and J. Lefman for advice on the volumetric display and analysis routines used for tonotopic mapping. Finally, D.H.T. thanks R. Menon (Robarts Institute, University of Western Ontario) for originally drawing his attention to the potential of MEMRI for activity mapping.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Daniel H Turnbull.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Spectra of sound stimuli. (PDF 1115 kb)

Supplementary Fig. 2

Sound stimulus versus quiet. (PDF 3451 kb)

Supplementary Fig. 3

Longitudinal MEMRI results. (PDF 4884 kb)

Supplementary Note (PDF 302 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, X., Wadghiri, Y., Sanes, D. et al. In vivo auditory brain mapping in mice with Mn-enhanced MRI. Nat Neurosci 8, 961–968 (2005).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing