Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

RNA editing produces glycine receptor α3P185L, resulting in high agonist potency

Abstract

The function of supramedullary glycine receptors (GlyRs) is still unclear. Using Wistar rat collicular slices, we demonstrate GlyR-mediated inhibition of spike discharge elicited by low glycine (10 μM). Searching for the molecular basis of this phenomenon, we identified a new GlyR isoform. GlyRα3P185L, a result of cytidine 554 deamination, confers high glycine sensitivity (EC50 5 μM) to neurons and thereby promotes the generation of sustained chloride conductances associated with tonic inhibition. The level of GlyRα3-C554U RNA editing is sensitive to experimentally induced brain lesion, inhibition of cytidine deamination by zebularine and inhibition of mRNA transcription by actinomycin D, but not to blockade of protein synthesis by cycloheximide. Conditional regulation of GlyRα3P185L is thus likely to be part of a post-transcriptional adaptive mechanism in neurons with enhanced excitability.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Inhibition of spontaneous spike discharge by low glycine in P15 dorsal midbrain slices, and GlyR structure.
Figure 2: Detection of GlyRα3-C554U transcripts in situ.
Figure 3: Concentration-response relations for cultured hippocampal neurons expressing GlyRα3 and α3P185L.
Figure 4: Characteristics of current desensitization and tonic glycine-induced currents in cultured hippocampal neurons expressing GlyRα3 or α3P185L.
Figure 5: Localization and functional assessment of GlyRα3 in perinatal (E21–P1) dorsal midbrain slices.

Similar content being viewed by others

References

  1. Fritschy, J.M. & Brünig, I. Formation and plasticity of GABAergic synapses: physiological mechanisms and pathophysiological implications. Pharmacol. Ther. 98, 299–323 (2003).

    Article  CAS  Google Scholar 

  2. Semyanov, A., Walker, M.C., Kullmann, D.M. & Silver, R.A. Tonically active GABA A receptors: modulating gain and maintaining the tone. Trends Neurosci. 27, 262–269 (2004).

    Article  CAS  Google Scholar 

  3. Legendre, P. The glycinergic inhibitory synapse. Cell. Mol. Life Sci. 58, 760–793 (2001).

    Article  CAS  Google Scholar 

  4. Meier, J. & Grantyn, R. A gephyrin-related mechanism restraining glycine receptor anchoring at GABAergic synapses. J. Neurosci. 24, 1398–1405 (2004).

    Article  CAS  Google Scholar 

  5. Breustedt, J., Schmitz, D., Heinemann, U. & Schmieden, V. Characterization of the inhibitory glycine receptor on entorhinal cortex neurons. Eur. J. Neurosci. 19, 1987–1991 (2004).

    Article  Google Scholar 

  6. Mori, M., Gähwiler, B.H. & Gerber, U. Beta-Alanine and taurine as endogenous agonists at glycine receptors in rat hippocampus in vitro. J. Physiol. (Lond.) 539, 191–200 (2002).

    Article  CAS  Google Scholar 

  7. Flint, A.C., Liu, X. & Kriegstein, A.R. Nonsynaptic glycine receptor activation during early neocortical development. Neuron 20, 43–53 (1998).

    Article  CAS  Google Scholar 

  8. Chattipakorn, S.C. & McMahon, L.L. Pharmacological characterization of glycine-gated chloride currents recorded in rat hippocampal slices. J. Neurophysiol. 87, 1515–1525 (2002).

    Article  CAS  Google Scholar 

  9. Chattipakorn, S.C. & McMahon, L.L. Strychnine-sensitive glycine receptors depress hyperexcitability in rat dentate gyrus. J. Neurophysiol. 89, 1339–1342 (2003).

    Article  CAS  Google Scholar 

  10. McGale, E.H., Pye, I.F., Stonier, C., Hutchinson, E.C. & Aber, G.M. Studies of the inter-relationship between cerebrospinal fluid and plasma amino acid concentrations in normal individuals. J. Neurochem. 29, 291–297 (1977).

    Article  CAS  Google Scholar 

  11. Whitehead, K.J., Manning, J.P., Smith, C.G. & Bowery, N.G. Determination of the extracellular concentration of glycine in the rat spinal cord dorsal horn by quantitative microdialysis. Brain Res. 910, 192–194 (2001).

    Article  CAS  Google Scholar 

  12. Roux, M.J. & Supplisson, S. Neuronal and glial glycine transporters have different stoichiometries. Neuron 25, 373–383 (2000).

    Article  CAS  Google Scholar 

  13. Kennedy, R.T., Thompson, J.E. & Vickroy, T.W. In vivo monitoring of amino acids by direct sampling of brain extracellular fluid at ultralow flow rates and capillary electrophoresis. J. Neurosci. Methods 114, 39–49 (2002).

    Article  CAS  Google Scholar 

  14. Higuchi, M. et al. RNA editing of AMPA receptor subunit GluR-B: a base-paired intron-exon structure determines position and efficiency. Cell 75, 1361–1370 (1993).

    Article  CAS  Google Scholar 

  15. Gurevich, I. et al. Altered editing of serotonin 2C receptor pre-mRNA in the prefrontal cortex of depressed suicide victims. Neuron 34, 349–356 (2002).

    Article  CAS  Google Scholar 

  16. Bhalla, T., Rosenthal, J.J., Holmgren, M. & Reenan, R. Control of human potassium channel inactivation by editing of a small mRNA hairpin. Nat. Struct. Mol. Biol. 11, 950–956 (2004).

    Article  CAS  Google Scholar 

  17. Kohler, M., Burnashev, N., Sakmann, B. & Seeburg, P.H. Determinants of Ca2+ permeability in both TM1 and TM2 of high affinity kainate receptor channels: diversity by RNA editing. Neuron 10, 491–500 (1993).

    Article  CAS  Google Scholar 

  18. Powell, L.M. et al. A novel form of tissue-specific RNA processing produces apolipoprotein-B48 in intestine. Cell 50, 831–840 (1987).

    Article  CAS  Google Scholar 

  19. Skuse, G.R., Cappione, A.J., Sowden, M., Metheny, L.J. & Smith, H.C. The neurofibromatosis type I messenger RNA undergoes base-modification RNA editing. Nucleic Acids Res. 24, 478–485 (1996).

    Article  CAS  Google Scholar 

  20. Breitinger, H.G. & Becker, C.M. The inhibitory glycine receptor-simple views of a complicated channel. ChemBioChem 3, 1042–1052 (2002).

    Article  CAS  Google Scholar 

  21. Kuhse, J., Schmieden, V. & Betz, H. Identification and functional expression of a novel ligand binding subunit of the inhibitory glycine receptor. J. Biol. Chem. 265, 22317–22320 (1990).

    CAS  Google Scholar 

  22. Haliassos, A. et al. Detection of minority point mutations by modified PCR technique: a new approach for a sensitive diagnosis of tumor-progression markers. Nucleic Acids Res. 17, 8093–8099 (1989).

    Article  CAS  Google Scholar 

  23. Ireton, G.C., McDermott, G., Black, M.E. & Stoddard, B.L. The structure of Escherichia coli cytosine deaminase. J. Mol. Biol. 315, 687–697 (2002).

    Article  CAS  Google Scholar 

  24. Vincenzetti, S. et al. Possible role of two phenylalanine residues in the active site of human cytidine deaminase. Protein Eng. 13, 791–799 (2000).

    Article  CAS  Google Scholar 

  25. Stell, B.M. & Mody, I. Receptors with different affinities mediate phasic and tonic GABAA conductances in hippocampal neurons. J. Neurosci. 22, RC223 (2002).

    Article  Google Scholar 

  26. Zhou, L. et al. Zebularine: a novel DNA methylation inhibitor that forms a covalent complex with DNA methyltransferases. J. Mol. Biol. 321, 591–599 (2002).

    Article  CAS  Google Scholar 

  27. Cheng, J.C. et al. Inhibition of DNA methylation and reactivation of silenced genes by zebularine. J. Natl. Cancer Inst. 95, 399–409 (2003).

    Article  CAS  Google Scholar 

  28. Yoo, C.B., Cheng, J.C. & Jones, P.A. Zebularine: a new drug for epigenetic therapy. Biochem. Soc. Trans. 32, 910–912 (2004).

    Article  CAS  Google Scholar 

  29. Seeburg, P.H. & Hartner, J. Regulation of ion channel/neurotransmitter receptor function by RNA editing. Curr. Opin. Neurobiol. 13, 279–283 (2003).

    Article  CAS  Google Scholar 

  30. Backus, J.W. & Smith, H.C. Three distinct RNA sequence elements are required for efficient apolipoprotein B (apoB) RNA editing in vitro. Nucleic Acids Res. 20, 6007–6014 (1992).

    Article  CAS  Google Scholar 

  31. Wedekind, J.E., Dance, G.S., Sowden, M.P. & Smith, H.C. Messenger RNA editing in mammals: new members of the APOBEC family seeking roles in the family business. Trends Genet. 19, 207–216 (2003).

    Article  CAS  Google Scholar 

  32. Meier, J., Jüttner, R., Kirischuk, S. & Grantyn, R. Synaptic anchoring of glycine receptors in developing collicular neurons under control of metabotropic glutamate receptor activity. Mol. Cell. Neurosci. 21, 324–340 (2002).

    Article  CAS  Google Scholar 

  33. De Saint, J., David-Watine, B., Korn, H. & Bregestovski, P. Activation of human α1 and α2 homomeric glycine receptors by taurine and GABA. J. Physiol. (Lond.) 535, 741–755 (2001).

    Article  Google Scholar 

  34. Mangin, J.M. et al. Kinetics properties of the α2 homo-oligomeric glycine receptor impairs a proper synaptic functioning. J. Physiol. (Lond.) 553, 369–386 (2003).

    Article  CAS  Google Scholar 

  35. Harvey, R.J. et al. GlyR α3: an essential target for spinal PGE2-mediated inflammatory pain sensitization. Science 304, 884–887 (2004).

    Article  CAS  Google Scholar 

  36. Haverkamp, S. et al. Diversity of glycine receptors in the mouse retina: Localization of the α3 subunit. J. Comp. Neurol. 465, 524–539 (2003).

    Article  CAS  Google Scholar 

  37. Grantyn, A., Moschovakis, A.K. & Kitama, T. Control of orienting movements: role of multiple tectal projections to the lower brainstem. Prog. Brain Res. 143, 423–438 (2004).

    Article  Google Scholar 

  38. Hikosaka, O. & Wurtz, R.H. Effects on eye movements of a GABA agonist and antagonist injected into monkey superior colliculus. Brain Res. 272, 368–372 (1983).

    Article  CAS  Google Scholar 

  39. Meyer, G., Kirsch, J., Betz, H. & Langosch, D. Identification of a gephyrin binding motif on the glycine receptor β subunit. Neuron 15, 563–572 (1995).

    Article  CAS  Google Scholar 

  40. Danglot, L., Rostaing, P., Triller, A. & Bessis, A. Morphologically identified glycinergic synapses in the hippocampus. Mol. Cell. Neurosci. 27, 394–403 (2004).

    Article  CAS  Google Scholar 

  41. Jüttner, R., Meier, J. & Grantyn, R. Slow IPSC kinetics, low levels of α1 subunit expression and paired-pulse depression are distinct properties of neonatal inhibitory GABAergic synaptic connections in the mouse superior colliculus. Eur. J. Neurosci. 13, 2088–2098 (2001).

    Article  Google Scholar 

  42. Henneberger, C. et al. GluR- and TrkB-mediated maturation of GABA receptor function during the period of eye opening. Eur. J. Neurosci. 21, 431–440 (2005).

    Article  Google Scholar 

  43. Richerson, G.B. & Wu, Y. Dynamic equilibrium of neurotransmitter transporters: not just for reuptake anymore. J. Neurophysiol. 90, 1363–1374 (2003).

    Article  CAS  Google Scholar 

  44. Rivera, C. et al. The K+Cl co-transporter KCC2 renders GABA hyperpolarizing during neuronal maturation. Nature 397, 251–255 (1999).

    Article  CAS  Google Scholar 

  45. Baker, A.J. et al. Changes in extracellular concentrations of glutamate, aspartate, glycine, dopamine, serotonin, and dopamine metabolites after transient global ischemia in the rabbit brain. J. Neurochem. 57, 1370–1379 (1991).

    Article  CAS  Google Scholar 

  46. Meier, J., Akyeli, J., Kirischuk, S. & Grantyn, R. GABAA receptor activity and PKC control inhibitory synaptogenesis in CNS tissue slices. Mol. Cell. Neurosci. 23, 600–613 (2003).

    Article  CAS  Google Scholar 

  47. Henneberger, C., Grantyn, R. & Rothe, T. Rapid genotyping of newborn gene mutant mice. J. Neurosci. Methods 100, 123–126 (2000).

    Article  CAS  Google Scholar 

  48. Brewer, G.J. & Cotman, C.W. Survival and growth of hippocampal neurons in defined medium at low density: advantages of a sandwich culture technique or low oxygen. Brain Res. 494, 65–74 (1989).

    Article  CAS  Google Scholar 

  49. Meier, J. & Schmieden, V. Inhibition of α-subunit glycine receptors by quinoxalines. Neuroreport 14, 1507–1510 (2003).

    Article  CAS  Google Scholar 

  50. Vannier, C. & Triller, A. Biology of the postsynaptic glycine receptor. Int. Rev. Cytol. 176, 201–244 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank U. Neumann for excellent technical assistance and S. Kirischuk for comments on earlier versions of the manuscript. This work was supported by the Deutsche Forschungsgemeinschaft (grant SFB 515 B2 to R.G.), by Charité University Medicine funding, and by the Medical Research Council (R.J.H.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jochen C Meier.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Figure 1

Distribution of GlyRα3 in the adult brain. (PDF 570 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meier, J., Henneberger, C., Melnick, I. et al. RNA editing produces glycine receptor α3P185L, resulting in high agonist potency. Nat Neurosci 8, 736–744 (2005). https://doi.org/10.1038/nn1467

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1467

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing