Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Reversible blockade of experience-dependent plasticity by calcineurin in mouse visual cortex

Abstract

Numerous protein kinases have been implicated in visual cortex plasticity, but the role of serine/threonine protein phosphatases has not yet been established. Calcineurin, the only known Ca2+/calmodulin-activated protein phosphatase in the brain, has been identified as a molecular constraint on synaptic plasticity in the hippocampus and on memory. Using transgenic mice overexpressing calcineurin inducibly in forebrain neurons, we now provide evidence that calcineurin is also involved in ocular dominance plasticity. A transient increase in calcineurin activity is found to prevent the shift of responsiveness in the visual cortex following monocular deprivation, and this effect is reversible. These results imply that the balance between protein kinases and phosphatases is critical for visual cortex plasticity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Calcineurin activity is increased in the visual cortex of CNO mice.
Figure 2: ODP is impaired by calcineurin overexpression.
Figure 3: The impairment is not due to a delayed plasticity in CNO mutant mice.
Figure 4: Plasticity is rescued by transgene suppression in CNO mice.
Figure 5: Calcineurin overexpression only during the critical period impairs ODP.
Figure 6: Response properties are normal in CNO mutant mice.
Figure 7: Restoring normal calcineurin action induces ODP in older mice.

Similar content being viewed by others

References

  1. Roberts, E.B., Meredith, M.A. & Ramoa, A.S. Suppression of NMDA receptor function using antisense DNA block ocular dominance plasticity while preserving visual responses. J. Neurophysiol. 80, 1021–1032 (1998).

    Article  CAS  Google Scholar 

  2. Daw, N.W. et al. Injection of MK-801 affects ocular dominance shifts more than visual activity. J. Neurophysiol. 81, 204–215 (1999).

    Article  CAS  Google Scholar 

  3. Beaver, C.J., Ji, Q., Fischer, Q.S. & Daw, N.W. Cyclic AMP-dependent protein kinase mediates ocular dominance shifts in cat visual cortex. Nat. Neurosci. 4, 159–163 (2001).

    Article  CAS  Google Scholar 

  4. Taha, S., Hanover, J.L., Silva, A.J. & Stryker, M.P. Autophosphorylation of alphaCaMKII is required for ocular dominance plasticity. Neuron 36, 483–491 (2002).

    Article  CAS  Google Scholar 

  5. Di Cristo, G. et al. Requirement of ERK activation for visual cortical plasticity. Science 292, 2337–2340 (2001).

    Article  CAS  Google Scholar 

  6. Mansuy, I.M. Calcineurin in memory and bidirectional plasticity. Biochem. Biophys. Res. Commun. 311, 1195–1208 (2003).

    Article  CAS  Google Scholar 

  7. Winder, D.G. & Sweatt, J.D. Roles of serine/threonine phosphatases in hippocampal synaptic plasticity. Nat. Rev. Neurosci. 2, 461–474 (2001).

    Article  CAS  Google Scholar 

  8. Klee, C.B., Crouch, T.H. & Krinks, M.H. Calcineurin: a calcium- and calmodulin-binding protein of the nervous system. Proc. Natl. Acad. Sci. USA 76, 6270–6273 (1979).

    Article  CAS  Google Scholar 

  9. Goto, S. et al. Cellular colocalization of calcium/calmodulin-dependent protein kinase II and calcineurin in the rat cerebral cortex and hippocampus. Neurosci. Lett. 149, 189–192 (1993).

    Article  CAS  Google Scholar 

  10. Goto, S., Singer, W. & Gu, Q. Immunocytochemical localization of calcineurin in the adult and developing primary visual cortex of cats. Exp. Brain Res. 96, 377–386 (1993).

    Article  CAS  Google Scholar 

  11. Lieberman, D.N. & Mody, I. Regulation of NMDA channel function by endogenous Ca(2+)-dependent phosphatase. Nature 369, 235–239 (1994).

    Article  CAS  Google Scholar 

  12. Tong, G., Shepherd, D. & Jahr, C.E. Synaptic desensitization of NMDA receptors by calcineurin. Science 267, 1510–1512 (1995).

    Article  CAS  Google Scholar 

  13. Ehlers, M.D. Reinsertion or degradation of AMPA receptors determined by activity-dependent endocytic sorting. Neuron 28, 511–525 (2000).

    Article  CAS  Google Scholar 

  14. Lee, H.K., Barbarosie, M., Kameyama, K., Bear, M.F. & Huganir, R.L. Regulation of distinct AMPA receptor phosphorylation sites during bidirectional synaptic plasticity. Nature 405, 955–959 (2000).

    Article  CAS  Google Scholar 

  15. Genoux, D. et al. Protein phosphatase 1 is a molecular constraint on learning and memory. Nature 418, 970–975 (2002).

    Article  CAS  Google Scholar 

  16. Morishita, W. et al. Regulation of synaptic strength by protein phosphatase 1. Neuron 32, 1133–1148 (2001).

    Article  CAS  Google Scholar 

  17. Torii, N., Kamishita, T., Otsu, Y. & Tsumoto, T. An inhibitor for calcineurin, FK506, blocks induction of long-term depression in rat visual cortex. Neurosci. Lett. 185, 1–4 (1995).

    Article  CAS  Google Scholar 

  18. Funauchi, M., Haruta, H. & Tsumoto, T. Effects of an inhibitor for calcium/calmodulin-dependent protein phosphatase, calcineurin, on induction of long-term potentiation in rat visual cortex. Neurosci. Res. 19, 269–278 (1994).

    Article  CAS  Google Scholar 

  19. Mansuy, I.M., Mayford, M., Jacob, B., Kandel, E.R. & Bach, M.E. Restricted and regulated overexpression reveals calcineurin as a key component in the transition from short-term to long-term memory. Cell 92, 39–49 (1998).

    Article  CAS  Google Scholar 

  20. Antoni, F.A. et al. Ca2+/calcineurin-inhibited adenylyl cyclase, highly abundant in forebrain regions, is important for learning and memory. J. Neurosci. 18, 9650–9661 (1998).

    Article  CAS  Google Scholar 

  21. Coghlan, V.M. et al. Association of protein kinase A and protein phosphatase 2B with a common anchoring protein. Science 267, 108–111 (1995).

    Article  CAS  Google Scholar 

  22. Oliveria, S.F., Gomez, L.L. & Dell'Acqua, M.L. Imaging kinase–AKAP79–phosphatase scaffold complexes at the plasma membrane in living cells using FRET microscopy. J. Cell Biol. 160, 101–112 (2003).

    Article  CAS  Google Scholar 

  23. Rao, Y. et al. Reduced ocular dominance plasticity and long-term potentiation in developing visual cortex of protein kinase A RIIα mutant mice. Eur. J. Neurosci. 20, 837–842 (2004).

    Article  Google Scholar 

  24. Fischer, Q.S. et al. Requirement for the RIIbeta isoform of PKA, but not calcium-stimulated adenylyl cyclase, in visual cortical plasticity. J. Neurosci. 24, 9049–9058 (2004).

    Article  CAS  Google Scholar 

  25. Goto, S. et al. Cellular localization of type II Ca2+/calmodulin-dependent protein kinase in the rat basal ganglia and intrastriatal grafts derived from fetal striatal primordia, in comparison with that of Ca2+/calmodulin-regulated protein phosphatase, calcineurin. Neuroscience 62, 695–705 (1994).

    Article  CAS  Google Scholar 

  26. Bito, H., Deisseroth, K. & Tsien, R.W. CREB phosphorylation and dephosphorylation: a Ca(2+)- and stimulus duration-dependent switch for hippocampal gene expression. Cell 87, 1203–1214 (1996).

    Article  CAS  Google Scholar 

  27. Pham, T.A., Impey, S., Storm, D.R. & Stryker, M.P. CRE-mediated gene transcription in neocortical neuronal plasticity during the developmental critical period. Neuron 22, 63–72 (1999).

    Article  CAS  Google Scholar 

  28. Mower, A.F., Liao, D.S., Nestler, E.J., Neve, R.L. & Ramoa, A.S. cAMP/Ca2+ response element-binding protein function is essential for ocular dominance plasticity. J. Neurosci. 22, 2237–2245 (2002).

    Article  CAS  Google Scholar 

  29. Gordon, J.A. & Stryker, M.P. Experience-dependent plasticity of binocular responses in the primary visual cortex of the mouse. J. Neurosci. 16, 3274–3286 (1996).

    Article  CAS  Google Scholar 

  30. Polli, J.W., Billingsley, M.L. & Kincaid, R.L. Expression of the calmodulin-dependent protein phosphatase, calcineurin, in rat brain: developmental patterns and the role of nigrostriatal innervation. Brain Res. Dev. Brain Res. 63, 105–119 (1991).

    Article  CAS  Google Scholar 

  31. Robertson, A., Perea, J., Tolmachova, T., Thomas, P.K. & Huxley, C. Effects of mouse strain, position of integration and tetracycline analogue on the tetracycline conditional system in transgenic mice. Gene 282, 65–74 (2002).

    Article  CAS  Google Scholar 

  32. Paul, S., Nairn, A.C., Wang, P. & Lombroso, P.J. NMDA-mediated activation of the tyrosine phosphatase STEP regulates the duration of ERK signaling. Nat. Neurosci. 6, 34–42 (2003).

    Article  CAS  Google Scholar 

  33. Giese, K.P., Fedorov, N.B., Filipkowski, R.K. & Silva, A.J. Autophosphorylation at Thr286 of the alpha calcium-calmodulin kinase II in LTP and learning. Science 279, 870–873 (1998).

    Article  CAS  Google Scholar 

  34. Cancedda, L. et al. Patterned vision causes CRE-mediated gene expression in the visual cortex through PKA and ERK. J. Neurosci. 23, 7012–7020 (2003).

    Article  CAS  Google Scholar 

  35. Taha, S. & Stryker, M.P. Rapid ocular dominance plasticity requires cortical but not geniculate protein synthesis. Neuron 34, 425–436 (2002).

    Article  CAS  Google Scholar 

  36. Groth, R.D., Dunbar, R.L. & Mermelstein, P.G. Calcineurin regulation of neuronal plasticity. Biochem. Biophys. Res. Commun. 311, 1159–1171 (2003).

    Article  CAS  Google Scholar 

  37. Cameron, A.M. et al. Calcineurin associated with the inositol 1,4,5-trisphosphate receptor-FKBP12 complex modulates Ca2+ flux. Cell 83, 463–472 (1995).

    Article  CAS  Google Scholar 

  38. Iwai, Y., Fagiolini, M., Obata, K. & Hensch, T.K. Rapid critical period induction by tonic inhibition in visual cortex. J. Neurosci. 23, 6695–6702 (2003).

    Article  CAS  Google Scholar 

  39. Fagiolini, M. et al. Specific GABAA circuits for visual cortical plasticity. Science 303, 1681–1683 (2004).

    Article  CAS  Google Scholar 

  40. Berardi, N., Pizzorusso, T. & Maffei, L. Extracellular matrix and visual cortical plasticity: freeing the synapse. Neuron 44, 905–908 (2004).

    CAS  PubMed  Google Scholar 

  41. Oray, S., Majewska, A. & Sur, M. Dendritic spine dynamics are regulated by monocular deprivation and extracellular matrix degradation. Neuron 44, 1021–1030 (2004).

    Article  CAS  Google Scholar 

  42. Zhou, Q., Homma, K.J. & Poo, M.M. Shrinkage of dendritic spines associated with long-term depression of hippocampal synapses. Neuron 44, 749–757 (2004).

    Article  CAS  Google Scholar 

  43. Lautermilch, N.J. & Spitzer, N.C. Regulation of calcineurin by growth cone calcium waves controls neurite extension. J. Neurosci. 20, 315–325 (2000).

    Article  CAS  Google Scholar 

  44. Fansa, H. et al. Stimulation of Schwann cell proliferation and axonal regeneration by FK 506. Restor. Neurol. Neurosci. 16, 77–86 (2000).

    CAS  PubMed  Google Scholar 

  45. Heynen, A.J. et al. Molecular mechanism for loss of visual cortical responsiveness following brief monocular deprivation. Nat. Neurosci. 6, 854–862 (2003).

    Article  CAS  Google Scholar 

  46. Hensch, T.K. et al. Comparison of plasticity in vivo and in vitro in the developing visual cortex of normal and protein kinase A RIbeta-deficient mice. J. Neurosci. 18, 2108–2117 (1998).

    Article  CAS  Google Scholar 

  47. Renger, J.J. et al. Experience-dependent plasticity without long-term depression by type 2 metabotropic glutamate receptors in developing visual cortex. Proc. Natl. Acad. Sci. USA 99, 1041–1046 (2002).

    Article  CAS  Google Scholar 

  48. Daw, N., Rao, Y., Wang, X.F., Fischer, Q. & Yang, Y. LTP and LTD vary with layer in rodent visual cortex. Vision Res. 44, 3377–3380 (2004).

    Article  Google Scholar 

  49. Sawtell, N.B. et al. NMDA receptor-dependent ocular dominance plasticity in adult visual cortex. Neuron 38, 977–985 (2003).

    Article  CAS  Google Scholar 

  50. Pham, T.A. et al. A semi-persistent adult ocular dominance plasticity in visual cortex is stabilized by activated CREB. Learn. Mem. 11, 738–747 (2004).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Public Health Service Grant R01 EY00053 and the Connecticut Lions Eye Research Foundation. I.M.M. is supported by the University of Zürich, the Swiss Federal Institute of Technology, the Swiss National Science Foundation, Swiss National Centre for Competence in Research 'Neural Plasticity and Repair', European Molecular Biology Organization, Human Frontier Science Program. N.W.D. is a Senior Science Investigator of Research to Prevent Blindness. We thank D. Winder for providing the mice, A. LaRue for help with PCR, R. Munton for help with synaptosomal preparations, and Y. Rao for help with the LTD measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yupeng Yang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Lack of ocular dominance plasticity with an intact onset of the critical period in CNO mice. (a) Calcineurin transgene is suppressed by doxycycline treatment from birth to P21 after the typical onset of the critical period (P19, Gordon and Stryker, 1996). The animals are monocularly deprived at P28, and recordings are performed four days later. (b) Columns showing ocular dominance distribution after monocular deprivation in CNO mice, which is identical to that in non–deprived wild–type mice (solid line), but significantly different from that in deprived wild–type mice (dash line, P < 0.0001, χ 2 test), indicating the impaired ocular dominance plasticity. (GIF 5 kb)

Supplementary Fig. 2

LTD is normal in visual cortex in CNO mice. LTD was induced by 15-min 1-Hz presynaptic stimulation paired with postsynaptic depolarization in CNO mice (77 ± 5%, n = 8; P < 0.01, compare to the baseline), which was identical to that observed in wild type animals (74.7 ± 3.1%). (GIF 17 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, Y., Fischer, Q., Zhang, Y. et al. Reversible blockade of experience-dependent plasticity by calcineurin in mouse visual cortex. Nat Neurosci 8, 791–796 (2005). https://doi.org/10.1038/nn1464

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1464

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing