Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Endocannabinoid control of food intake and energy balance

Abstract

Marijuana and its major psychotropic component, Δ9-tetrahydrocannabinol, stimulate appetite and increase body weight in wasting syndromes, suggesting that the CB1 cannabinoid receptor and its endogenous ligands, the endocannabinoids, are involved in controlling energy balance. The endocannabinoid system controls food intake via both central and peripheral mechanisms, and it may also stimulate lipogenesis and fat accumulation. Here we discuss the multifaceted regulation of energy homeostasis by endocannabinoids, together with its applications to the treatment of eating disorders and metabolic syndromes.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: The endocannabinoid system in neurons.

References

  1. 1

    Gaoni, Y. & Mechoulam, R. Isolation, structure, and partial synthesis of an active constituent of hashish. J. Am. Chem. Soc. 86, 1646–1647 (1964).

    CAS  Google Scholar 

  2. 2

    Matsuda, L.A., Lolait, S.J., Brownstein, M.J., Young, A.C. & Bonner, T.I. Structure of a cannabinoid receptor and functional expression of the cloned cDNA. Nature 346, 561–564 (1990).

    CAS  PubMed  Google Scholar 

  3. 3

    Howlett, A.C. The cannabinoid receptors. Prostaglandins Other Lipid Mediat. 68–69, 619–631 (2002).

    PubMed  Google Scholar 

  4. 4

    Devane, W.A. et al. Isolation and structure of a brain constituent that binds to the cannabinoid receptor. Science 258, 1946–1949 (1992).

    CAS  PubMed  Google Scholar 

  5. 5

    Mechoulam, R. et al. Identification of an endogenous 2-monoglyceride, present in canine gut, that binds to cannabinoid receptors. Biochem. Pharmacol. 50, 83–90 (1995).

    CAS  PubMed  Google Scholar 

  6. 6

    Sugiura, T. et al. 2-Arachidonoylglycerol: a possible endogenous cannabinoid receptor ligand in brain. Biochem. Biophys. Res. Commun. 215, 89–97 (1995).

    CAS  PubMed  Google Scholar 

  7. 7

    Okamoto, Y., Morishita, J., Tsuboi, K., Tonai, T. & Ueda, N. Molecular characterization of a phospholipase D generating anandamide and its congeners. J. Biol. Chem. 279, 5298–5305 (2004).

    CAS  PubMed  Google Scholar 

  8. 8

    Bisogno, T. et al. Cloning of the first sn1-DAG lipases points to the spatial and temporal regulation of endocannabinoid signaling in the brain. J. Cell Biol. 163, 463–468 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. 9

    Cravatt, B.F. et al. Molecular characterization of an enzyme that degrades neuromodulatory fatty-acid amides. Nature 384, 83–87 (1996).

    CAS  PubMed  Google Scholar 

  10. 10

    Dinh, T.P. et al. Brain monoglyceride lipase participating in endocannabinoid inactivation. Proc. Natl. Acad. Sci. USA 99, 10819–10824 (2002).

    CAS  PubMed  Google Scholar 

  11. 11

    Di Marzo. V., Bifulco, F. and De Petrocellis, L. The endocannabinoid system and its therapeutic exploitation. Nat. Rev. Drug Discov. 3, 771–784 (2004).

    CAS  PubMed  Google Scholar 

  12. 12

    Williams, C.M., Rogers, P.J. & Kirkham, T.C. Hyperphagia in pre-fed rats following oral delta9-THC. Physiol. Behav. 65, 343–346 (1998).

    CAS  PubMed  Google Scholar 

  13. 13

    Williams, C.M. & Kirkham, T.C. Anandamide induces overeating: mediation by central cannabinoid (CB1) receptors. Psychopharmacology (Berl.) 143, 315–317 (1999).

    CAS  Google Scholar 

  14. 14

    Hao, S., Avraham, Y., Mechoulam, R. & Berry, E.M. Low dose anandamide affects food intake, cognitive function, neurotransmitter and corticosterone levels in diet-restricted mice. Eur. J. Pharmacol. 392, 147–156 (2000).

    CAS  PubMed  Google Scholar 

  15. 15

    Rinaldi-Carmona, M. et al. SR141716A, a potent and selective antagonist of the brain cannabinoid receptor. FEBS Lett. 350, 240–244 (1994).

    CAS  PubMed  Google Scholar 

  16. 16

    Simiand, J., Keane, M., Keane, P.E. & Soubrie, P., Sr. 141716, a CB1 cannabinoid receptor antagonist, selectively reduces sweet food intake in marmoset. Behav. Pharmacol. 9, 179–181 (1998).

    CAS  PubMed  Google Scholar 

  17. 17

    Colombo, G. et al. Appetite suppression and weight loss after the cannabinoid antagonist SR 141716. Life Sci. 63, PL113–PL117 (1998).

    CAS  PubMed  Google Scholar 

  18. 18

    Rowland, N.E. Mukherjee. M. & Robertson, K. Effects of the cannabinoid receptor antagonist SR 141716, alone and in combination with dexfenfluramine or naloxone, on food intake in rats. Psychopharmacology (Berl.) 159, 111–116 (2001).

    CAS  Google Scholar 

  19. 19

    Williams, C.M. & Kirkham, T.C. Reversal of delta 9-THC hyperphagia by SR141716 and naloxone but not dexfenfluramine. Pharmacol. Biochem. Behav. 71, 333–340 (2002).

    CAS  PubMed  Google Scholar 

  20. 20

    Werner, N.A. & Koch, J.E. Effects of the cannabinoid antagonists AM281 and AM630 on deprivation-induced intake in Lewis rats. Brain Res. 967, 290–292 (2003).

    CAS  PubMed  Google Scholar 

  21. 21

    Rinaldi-Carmona, M. et al. SR147778 [5-(4-bromophenyl)-1-(2,4-dichlorophenyl)-4-ethyl-N-(1-piperidinyl)-1H-pyrazole-3-carboxamide], a new potent and selective antagonist of the CB1 cannabinoid receptor: biochemical and pharmacological characterization. J. Pharmacol. Exp. Ther. 310, 905–914 (2004).

    CAS  PubMed  Google Scholar 

  22. 22

    Chambers, A.P., Sharkey, K.A. & Koopmans, H.S. Cannabinoid (CB)1 receptor antagonist, AM 251, causes a sustained reduction of daily food intake in the rat. Physiol. Behav. 82, 863–869 (2004).

    CAS  PubMed  Google Scholar 

  23. 23

    Di Marzo, V. et al. Leptin-regulated endocannabinoids are involved in maintaining food intake. Nature 410, 822–825 (2001).

    CAS  PubMed  Google Scholar 

  24. 24

    Jamshidi, N. & Taylor, D.A. Anandamide administration into the ventromedial hypothalamus stimulates appetite in rats. Br. J. Pharmacol. 134, 1151–1154 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. 25

    Kirkham, T.C., Williams, C.M., Fezza, F. & Di Marzo, V. Endocannabinoid levels in rat limbic forebrain and hypothalamus in relation to fasting, feeding and satiation: stimulation of eating by 2-arachidonoyl glycerol. Br. J. Pharmacol. 136, 550–557 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. 26

    Tucci, S.A., Rogers, E.K., Korbonits, M. & Kirkham, T.C. The cannabinoid CB1 receptor antagonist SR141716 blocks the orexigenic effects of intrahypothalamic ghrelin. Br. J. Pharmacol. 143, 520–533 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. 27

    McLaughlin, P.J. et al. The cannabinoid CB1 antagonists SR 141716A and AM 251 suppress food intake and food-reinforced behavior in a variety of tasks in rats. Behav. Pharmacol. 14, 583–588 (2003).

    CAS  PubMed  Google Scholar 

  28. 28

    De Vry, J., Schreiber, R., Eckel, G. & Jentzsch, K.R. Behavioral mechanisms underlying inhibition of food-maintained responding by the cannabinoid receptor antagonist/inverse agonist SR141716A. Eur. J. Pharmacol. 483, 55–63 (2004).

    CAS  PubMed  Google Scholar 

  29. 29

    Thornton-Jones, Z.D., Vickers, S.P. & Clifton, P.G. The cannabinoid CB1 receptor antagonist SR141716A reduces appetitive and consummatory responses for food. Psychopharmacology (Berl.) advance online publication, January 2005 (10.1007/s00213-004-2047-8).

  30. 30

    Higgs, S., Williams, C.M. & Kirkham, T.C. Cannabinoid influences on palatability: microstructural analysis of sucrose drinking after delta(9)-tetrahydrocannabinol, anandamide, 2-arachidonoyl glycerol and SR141716. Psychopharmacology (Berl.) 165, 370–377 (2003).

    CAS  Google Scholar 

  31. 31

    Cota, D. et al. The endogenous cannabinoid system affects energy balance via central orexigenic drive and peripheral lipogenesis. J. Clin. Invest. 112, 423–431 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. 32

    Horvath, T.L. Endocannabinoids and the regulation of body fat: the smoke is clearing. J. Clin. Invest. 112, 323–326 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. 33

    Di, S., Malcher-Lopes, R., Halmos, K.C. & Tasker, J.G. Nongenomic glucocorticoid inhibition via endocannabinoid release in the hypothalamus: a fast feedback mechanism. J. Neurosci. 23, 4850–4857 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. 34

    Hilairet, S., Bouaboula, M., Carriere, D., Le Fur, G. & Casellas P. Hypersensitization of the Orexin 1 receptor by the CB1 receptor: evidence for cross-talk blocked by the specific CB1 antagonist, SR141716. J. Biol. Chem. 278, 23731–23737 (2003).

    CAS  PubMed  Google Scholar 

  35. 35

    Poncelet, M., Maruani, J., Calassi, R. & Soubrie, P. Overeating, alcohol and sucrose consumption decrease in CB1 receptor deleted mice. Neurosci. Lett. 343, 216–218 (2003).

    CAS  PubMed  Google Scholar 

  36. 36

    Verty, A.N., McFarlane, J.R., McGregor, I.S. & Mallet, P.E. Evidence for an interaction between CB1 cannabinoid and melanocortin MCR-4 receptors in regulating food intake. Endocrinology 145, 3224–3231 (2004).

    CAS  PubMed  Google Scholar 

  37. 37

    Verty, A.N., McGregor, I.S. & Mallet, P.E. The dopamine receptor antagonist SCH 23390 attenuates feeding induced by Delta9-tetrahydrocannabinol. Brain Res. 1020, 188–195 (2004).

    CAS  PubMed  Google Scholar 

  38. 38

    Duarte, C. et al. Blockade by the cannabinoid CB1 receptor antagonist, rimonabant (SR141716), of the potentiation by quinelorane of food-primed reinstatement of food-seeking behavior. Neuropsychopharmacology 29, 911–920 (2004).

    CAS  PubMed  Google Scholar 

  39. 39

    Kirkham, T.C. & Williams, C.M. Synergistic effects of opioid and cannabinoid antagonists on food intake. Psychopharmacology (Berl.) 153, 267–270 (2001).

    CAS  Google Scholar 

  40. 40

    Verty, A.N., Singh, M.E., McGregor, I.S. & Mallet, P.E. The cannabinoid receptor antagonist SR 141716 attenuates overfeeding induced by systemic or intracranial morphine. Psychopharmacology (Berl.) 168, 314–323 (2003).

    CAS  Google Scholar 

  41. 41

    Chen, R.Z., Huang, R.R., Shen, C.P., MacNeil, D.J. & Fong, T.M. Synergistic effects of cannabinoid inverse agonist AM251 and opioid antagonist nalmefene on food intake in mice. Brain Res. 999, 227–230 (2004).

    CAS  PubMed  Google Scholar 

  42. 42

    Fride, E. The endocannabinoid-CB(1) receptor system in pre- and postnatal life. Eur. J. Pharmacol. 500, 289–297 (2004).

    CAS  PubMed  Google Scholar 

  43. 43

    Berrendero, F., Sepe, N., Ramos, J.A., Di Marzo, V. & Fernandez-Ruiz, J.J. Analysis of cannabinoid receptor binding and mRNA expression and endogenous cannabinoid contents in the developing rat brain during late gestation and early postnatal period. Synapse 33, 181–191 (1999).

    CAS  PubMed  Google Scholar 

  44. 44

    Di Marzo, V. et al. Trick or treat from food endocannabinoids? Nature 396, 636 (1998).

    CAS  PubMed  Google Scholar 

  45. 45

    Gomez, R. et al. A peripheral mechanism for CB1 cannabinoid receptor-dependent modulation of feeding. J. Neurosci. 22, 9612–9617 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. 46

    Burdyga, G. et al. Expression of cannabinoid CB1 receptors by vagal afferent neurons is inhibited by cholecystokinin. J. Neurosci. 24, 2708–2715 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. 47

    Black, S.C. Cannabinoid receptor antagonists and obesity. Curr. Opin. Investig. Drugs 5, 389–394 (2004).

    CAS  PubMed  Google Scholar 

  48. 48

    Vickers, S.P., Webster, L.J., Wyatt, A., Dourish, C.T. & Kennett, G.A. Preferential effects of the cannabinoid CB1 receptor antagonist, SR 141716, on food intake and body weight gain of obese (fa/fa) compared to lean Zucker rats. Psychopharmacology (Berl.) 167, 103–111 (2003).

    CAS  Google Scholar 

  49. 49

    Ravinet Trillou, C. et al. Anti-obesity effect of SR141716, a CB1 receptor antagonist, in diet-induced obese mice. Am. J. Physiol. Regul. Integr. Comp. Physiol. 284, R345–R353 (2003).

    Google Scholar 

  50. 50

    Hildebrandt, A.L., Kelly-Sullivan, D.M. & Black, S.C. Antiobesity effects of chronic cannabinoid CB1 receptor antagonist treatment in diet-induced obese mice. Eur. J. Pharmacol. 462, 125–132 (2003).

    CAS  PubMed  Google Scholar 

  51. 51

    Poirier, B. et al. The anti-obesity effect of rimonabant is associated with an improved serum lipid profile. Diabetes Obes. Metab. 7, 65–72 (2005).

    CAS  PubMed  Google Scholar 

  52. 52

    Ravinet Trillou, C., Delgorge, C., Menet, C., Arnone, M. & Soubrie, P. CB1 cannabinoid receptor knockout in mice leads to leanness, resistence to diet-induced obesity and enhanced leptin sensitivity. Int. J. Obes. Relat. Metab. Disord. 28, 640–648 (2004).

    CAS  PubMed  Google Scholar 

  53. 53

    Liu, Y.L., Connoley, I.P., Wilson, C.A. & Stock, M.J. Effects of the cannabinoid CB1 receptor antagonist SR141716 on oxygen consumption and soleus muscle glucose uptake in Lep(ob)/Lep(ob) mice. Int. J. Obes. Relat. Metab. Disord. 29, 183–187 (2005).

    CAS  Google Scholar 

  54. 54

    Bensaid, M. et al. The cannabinoid CB1 receptor antagonist SR141716 increases Acrp30 mRNA expression in adipose tissue of obese fa/fa rats and in cultured adipocyte cells. Mol. Pharmacol. 63, 908–914 (2003).

    CAS  PubMed  Google Scholar 

  55. 55

    Osei-Hyiaman, D. et al. Endocannabinoid action at hepatic CB1 receptors regulates fatty acid synthesis: role in diet-induced obesity. J. Clin. Invest. (in the press).

  56. 56

    Qi, Y. et al. Adiponectin acts in the brain to decrease body weight. Nat. Med. 10, 524–529 (2004).

    CAS  PubMed  Google Scholar 

  57. 57

    Carai, M.A., Colombo, G. & Gessa, G.L. Rapid tolerance to the intestinal prokinetic effect of cannabinoid CB1 receptor antagonist, SR 141716 (Rimonabant). Eur. J. Pharmacol. 494, 221–224 (2004).

    CAS  PubMed  Google Scholar 

  58. 58

    Berger, A. et al. Anandamide and diet: inclusion of dietary arachidonate and docosahexaenoate leads to increased brain levels of the corresponding N-acylethanolamines in piglets. Proc. Natl. Acad. Sci. USA 98, 6402–6406 (2001).

    CAS  PubMed  Google Scholar 

  59. 59

    Hanus, L. et al. Short-term fasting and prolonged semi-starvation have opposite effects on 2-AG levels in mouse brain. Brain Res. 983, 144–151 (2003).

    CAS  PubMed  Google Scholar 

  60. 60

    Matias, I. et al. Effect of maternal under-nutrition on pup body weight and hypothalamic endocannabinoid levels. Cell. Mol. Life Sci. 60, 382–389 (2003).

    CAS  PubMed  Google Scholar 

  61. 61

    Watanabe, S., Doshi, M. & Hamazaki, T. n-3 Polyunsaturated fatty acid (PUFA) deficiency elevates and n-3 PUFA enrichment reduces brain 2-arachidonoylglycerol level in mice. Prostaglandins Leukot. Essent. Fatty Acids 69, 51–59 (2003).

    CAS  PubMed  Google Scholar 

  62. 62

    Monteleone, P. et al. Blood levels of the endocannabinoid anandamide are increased in anorexia nervosa and in binge eating disorder, but not in bulimia nervosa. Neuropsychopharmacology (in the press).

  63. 63

    Pertwee, R.G. Inverse agonism and neutral antagonism at cannabinoid CB(1) receptors. Life Sci. 76, 1307–1324 (2005).

    CAS  PubMed  Google Scholar 

  64. 64

    Maccarrone, M., Di Rienzo, M., Finazzi-Agro, A. & Rossi, A. Leptin activates the anandamide hydrolase promoter in human T lymphocytes through STAT3. J. Biol. Chem. 278, 13318–13324 (2003).

    CAS  PubMed  Google Scholar 

  65. 65

    Sipe, J.C., Waalen, J., Gerber, A. & Beutler, E. Overweight and obesity associated with a missense polymorphism in fatty acid amide hydrolase (FAAH). Int. J. Obesity, advance online publication 5 April 2005 (10.1038/sj.ijo.0802954).

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Vincenzo Di Marzo.

Ethics declarations

Competing interests

The authors declare competing financial interests (see the Nature Neuroscience website for details).

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Di Marzo, V., Matias, I. Endocannabinoid control of food intake and energy balance. Nat Neurosci 8, 585–589 (2005). https://doi.org/10.1038/nn1457

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing