Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Commentary
  • Published:

How can drug addiction help us understand obesity?

To the degree that drugs and food activate common reward circuitry in the brain, drugs offer powerful tools for understanding the neural circuitry that mediates food-motivated habits and how this circuitry may be hijacked to cause appetitive behaviors to go awry.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Dopaminergic pathways.
Figure 2
Figure 3: Role of dopamine D2 receptors in obesity.

References

  1. Fraenkel, G.S. The raison d'etre of secondary plant substances: these odd chemicals arose as a means of protecting plants from insects and now guide insects to food. Science 129, 1466–1470 (1959).

    Article  CAS  Google Scholar 

  2. Rozin, P. Adaptive food sampling patterns in vitamin deficient rats. J. Comp. Physiol. Psychol. 69, 126–132 (1969).

    Article  CAS  Google Scholar 

  3. Kendler, K.S., Thornton, L.M. & Pedersen, N.L. Tobacco consumption in Swedish twins reared apart and reared together. Arch. Gen. Psychiatry 57, 886–892 (2000).

    Article  CAS  Google Scholar 

  4. Uhl, G.R., Liu, Q.R. & Naiman, D. Substance abuse vulnerability loci: converging genome scanning data. Trends Genet. 18, 420–425 (2002).

    Article  CAS  Google Scholar 

  5. Baessler, A. et al. Genetic linkage and association of the growth hormone secretagogue receptor (ghrelin receptor) gene in human obesity. Diabetes 54, 259–267 (2005).

    Article  CAS  Google Scholar 

  6. Reale, D., Festa-Bianchet, M. & Jorgenson, J.T. Heritability of body mass varies with age and season in wild bighorn sheep. Heredity 83, 526–532 (1999).

    Article  Google Scholar 

  7. Friedman, J.M. & Leibel, R.L. Tackling a weighty problem. Cell 69, 217–220 (1992).

    Article  CAS  Google Scholar 

  8. Volkow, N.D. & Li, T.K. Drug addiction: the neurobiology of behaviour gone awry. Nat. Rev. Neurosci. 5, 963–970 (2004).

    Article  CAS  Google Scholar 

  9. Kosten, T.A. et al. Acquisition and maintenance of intravenous cocaine self-administration in Lewis and Fischer inbred rat strains. Brain Res. 778, 418–429 (1997).

    Article  CAS  Google Scholar 

  10. Ranaldi, R., Bauco, P., McCormick, S., Cools, A.R. & Wise, R.A. Equal sensitivity to cocaine reward in addiction-prone and addiction-resistant rat genotypes. Behav. Pharmacol. 12, 527–534 (2001).

    Article  CAS  Google Scholar 

  11. Dallman, M.F., Pecoraro, N.C. & la Fleur, S.E. Chronic stress and comfort foods: self-medication and abdominal obesity. Brain Behav. Immunity (in the press).

  12. Kreek, M.J. & Koob, G.F. Drug dependence: stress and dysregulation of brain reward pathways. Drug Alcohol Depend. 51, 23–47 (1998).

    Article  CAS  Google Scholar 

  13. Geary, N. Is the control of fat ingestion sexually differentiated? Physiol. Behav. 83, 659–671 (2004).

    Article  CAS  Google Scholar 

  14. Hu, M., Crombag, H.S., Robinson, T.E. & Becker, J.B. Biological basis of sex differences in the propensity to self-administer cocaine. Neuropsychopharmacology 29, 81–85 (2004).

    Article  CAS  Google Scholar 

  15. Volkow, N.D. et al. Effects of route of administration on cocaine induced dopamine transporter blockade in the human brain. Life Sci. 67, 1507–1515 (2000).

    Article  CAS  Google Scholar 

  16. Johanson, C.E., Balster, R.L. & Bonese, K. Self-administration of psychomotor stimulant drugs: the effects of unlimited access. Pharmacol. Biochem. Behav. 4, 45–51 (1976).

    Article  CAS  Google Scholar 

  17. Corrigall, W.A. & Coen, K.M. Nicotine maintains robust self-administration in rats on a limited-access schedule. Psychopharmacology (Berl.) 99, 473–478 (1989).

    Article  CAS  Google Scholar 

  18. Johnson, J.G., Cohen, P., Kasen, S. & Brook, J.S. Childhood adversities associated with risk for eating disorders or weight problems during adolescence or early adulthood. Am. J. Psychiatry 159, 394–400 (2002).

    Article  Google Scholar 

  19. Dube, S.R. et al. Childhood abuse, neglect, and household dysfunction and the risk of illicit drug use: the adverse childhood experiences study. Pediatrics 111, 564–572 (2003).

    Article  Google Scholar 

  20. Sarnyai, Z., Shaham, Y. & Heinrichs, S.C. The role of corticotropin-releasing factor in drug addiction. Pharmacol. Rev. 53, 209–243 (2001).

    CAS  PubMed  Google Scholar 

  21. Swanson, L.W., Sawchenko, P.E., Rivier, J. & Vale, W.W. Organization of ovine corticotropin-releasing factor immunoreactive cells and fibers in the rat brain: an immunohistochemical study. Neuroendocrinology 36, 165–186 (1983).

    Article  CAS  Google Scholar 

  22. Richard, D., Lin, Q. & Timofeeva, E. The corticotropin-releasing factor family of peptides and CRF receptors: their roles in the regulation of energy balance. Eur. J. Pharmacol. 440, 189–197 (2002).

    Article  CAS  Google Scholar 

  23. Wagner, F.A. & Anthony, J.C. From first drug use to drug dependence; developmental periods of risk for dependence upon marijuana, cocaine, and alcohol. Neuropsychopharmacology 26, 479–488 (2002).

    Article  Google Scholar 

  24. Sowell, E.R. et al. Mapping cortical change across the human life span. Nat. Neurosci. 6, 309–315 (2003).

    Article  CAS  Google Scholar 

  25. Adriani, W. et al. Evidence for enhanced neurobehavioral vulnerability to nicotine during periadolescence in rats. J. Neurosci. 23, 4712–4716 (2003).

    Article  CAS  Google Scholar 

  26. Buka, S.L., Shenassa, E.D. & Niaura, R. Elevated risk of tobacco dependence among offspring of mothers who smoked during pregnancy: a 30-year prospective study. Am. J. Psychiatry 160, 1978–1984 (2003).

    Article  Google Scholar 

  27. Toschke, A.M., Ehlin, A.G., von Kries, R., Ekbom, A. & Montgomery, S.M. Maternal smoking during pregnancy and appetite control in offspring. J. Perinat. Med. 31, 251–256 (2003).

    Article  Google Scholar 

  28. Mennella, J.A., Griffin, C.E. & Beauchamp, G.K. Flavor programming during infancy. Pediatrics 113, 840–845 (2004).

    Article  Google Scholar 

  29. Wise, R.A. & Raptis, L. Effects of naloxone and pimozide on initiation and maintenance measures of free feeding. Brain Res. 368, 62–68 (1986).

    Article  CAS  Google Scholar 

  30. Kavaliers, M. & Hirst, M. Slugs and snails and opiate tales: opioids and feeding behavior in invertebrates. Fed. Proc. 46, 168–172 (1987).

    CAS  PubMed  Google Scholar 

  31. Josefsson, J.O. & Johansson, P. Naloxone-reversible effect of opioids on pinocytosis in Amoeba proteus. Nature 282, 78–80 (1979).

    Article  CAS  Google Scholar 

  32. Di Chiara, G. & Imperato, A. Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats. Proc. Natl Acad. Sci. USA 85, 5274–5278 (1988).

    Article  CAS  Google Scholar 

  33. Wise, R.A. & Rompre, P.P. Brain dopamine and reward. Annu. Rev. Psychol. 40, 191–225 (1989).

    Article  CAS  Google Scholar 

  34. Wise, R.A. Dopamine, learning and motivation. Nat. Rev. Neurosci. 5, 483–494 (2004).

    Article  CAS  Google Scholar 

  35. Bozarth, M.A. & Wise, R.A. Intracranial self-administration of morphine into the ventral tegmental area in rats. Life Sci. 28, 551–555 (1981).

    Article  CAS  Google Scholar 

  36. MacDonald, A.F., Billington, C.J. & Levine, A.S. Alterations in food intake by opioid and dopamine signaling pathways between the ventral tegmental area and the shell of the nucleus accumbens. Brain Res. 1018, 78–85 (2004).

    Article  CAS  Google Scholar 

  37. Zhang, M., Gosnell, B.A. & Kelley, A.E. Intake of high-fat food is selectively enhanced by mu opioid receptor stimulation within the nucleus accumbens. J. Pharmacol. Exp. Ther. 285, 908–914 (1998).

    CAS  PubMed  Google Scholar 

  38. Yeomans, M.R. & Gray, R.W. Opioid peptides and the control of human ingestive behaviour. Neurosci. Biobehav. Rev. 26, 713–728 (2002).

    Article  CAS  Google Scholar 

  39. Cabanac, M. Physiological role of pleasure. Science 173, 1103–1107 (1971).

    Article  CAS  Google Scholar 

  40. Fulton, S., Woodside, B. & Shizgal, P. Modulation of brain reward circuitry by leptin. Science 287, 125–128 (2000).

    Article  CAS  Google Scholar 

  41. Carroll, M.E. in Drugs of Abuse and Addiction: Neurobehavioral Toxicology (eds. Niesink, R.J.M., Jaspers, R.M.A., Kornet, L.M.W. & vanRee, J.M.) 286–311 (CRC Press, Boca Raton, Florida, USA, 1999).

    Google Scholar 

  42. Shalev, U., Yap, J. & Shaham, Y. Leptin attenuates acute food deprivation-induced relapse to heroin seeking. J. Neurosci. 21, RC129-1–RC129-5 (2001).

    Article  Google Scholar 

  43. Volkow, N.D., Fowler, J.S. & Wang, G.J. The addicted human brain: insights from imaging studies. J. Clin. Invest. 111, 1444–1451 (2003).

    Article  CAS  Google Scholar 

  44. Volkow, N.D., Fowler, J.S., Wang, G.J. & Swanson, J.M. Dopamine in drug abuse and addiction: results from imaging studies and treatment implications. Mol. Psychiatry 9, 557–569 (2004).

    Article  CAS  Google Scholar 

  45. Koob, G.F. et al. Neurobiological mechanisms in the transition from drug use to drug dependence. Neurosci. Biobehav. Rev. 27, 739–749 (2004).

    Article  CAS  Google Scholar 

  46. Volkow, N.D. & Fowler, J.S. Addiction, a disease of compulsion and drive: involvement of the orbitofrontal cortex. Cereb. Cortex 10, 318–325 (2000).

    Article  CAS  Google Scholar 

  47. McFarland, K., Davidge, S.B., Lapish, C.C. & Kalivas, P.W. Limbic and motor circuitry underlying footshock-induced reinstatement of cocaine-seeking behavior. J. Neurosci. 24, 1551–1560 (2004).

    Article  CAS  Google Scholar 

  48. Porrino, L.J., Lyons, D., Smith, H.R., Daunais, J.B. & Nader, M.A. Cocaine self-administration produces a progressive involvement of limbic, association, and sensorimotor striatal domains. J. Neurosci. 24, 3554–3562 (2004).

    Article  CAS  Google Scholar 

  49. Pijl, H. Reduced dopaminergic tone in hypothalamic neural circuits: expression of a “thrifty” genotype underlying the metabolic syndrome? Eur. J. Pharmacol. 480, 125–131 (2003).

    Article  CAS  Google Scholar 

  50. Wang, G.J. et al. Brain dopamine and obesity. Lancet 357, 354–357 (2001).

    Article  CAS  Google Scholar 

  51. American Diabetes Association et al. Consensus development conference on antipsychotic drugs and obesity and diabetes. J. Clin. Psychiatry 65, 267–272 (2004).

  52. Gautier, J.F. et al. Differential brain responses to satiation in obese and lean men. Diabetes 49, 838–846 (2000).

    Article  CAS  Google Scholar 

  53. Wang, G.J. et al. Exposure to appetitive food stimuli markedly activates the human brain. Neuroimage 21, 1790–1797 (2004).

    Article  Google Scholar 

  54. Rolls, E.T. The functions of the orbitofrontal cortex. Brain Cogn. 55, 11–29 (2004).

    Article  Google Scholar 

  55. Zubieta, J.K. et al. Increased mu opioid receptor binding detected by PET in cocaine-dependent men is associated with cocaine craving. Nat. Med. 2, 1225–1229 (1996).

    Article  CAS  Google Scholar 

  56. Heinz, A. et al. Correlation of stable elevations in striatal μ-opioid receptor availability in detoxified alcoholic patients with alcohol craving: a positron emission tomography study using carbon 11-labeled carfentanil. Arch. Gen. Psychiatry 62, 57–64 (2005).

    Article  Google Scholar 

  57. Levine, A.S., Kotz, C.M. & Gosnell, B.A. Sugars: hedonic aspects, neuroregulation, and energy balance. Am. J. Clin. Nutr. 78, 834S–842S (2003).

    Article  CAS  Google Scholar 

  58. National Center for Health Statistics. FASTATS A to Z (2004) <http://www.cdc.gov/nchs/fastats/>.

  59. Shaham, Y., Shalev, U., Lu, L., De Wit, H. & Stewart, J. The reinstatement model of drug relapse: history, methodology and major findings. Psychopharmacology (Berl.) 168, 3–20 (2003).

    Article  CAS  Google Scholar 

  60. Bassareo, V. & Di Chiara, G. Differential responsiveness of dopamine transmission to food-stimuli in nucleus accumbens shell/core compartments. Neuroscience 89, 637–641 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank C. Kassed for her assistance in preparing the manuscript.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Volkow, N., Wise, R. How can drug addiction help us understand obesity?. Nat Neurosci 8, 555–560 (2005). https://doi.org/10.1038/nn1452

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1452

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing