Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Control of synaptic strength and timing by the release-site Ca2+ signal

An Erratum to this article was published on 01 July 2005

Abstract

Transmitter release is triggered by highly localized, transient increases in the presynaptic Ca2+ concentration ([Ca2+]). Rapidly decaying [Ca2+] elevations were generated using Ca2+ uncaging techniques, and [Ca2+] was measured with a low-affinity Ca2+ indicator in a giant presynaptic terminal, the calyx of Held, in rat brain slices. The rise time and amplitude of evoked excitatory postsynaptic currents (EPSCs) depended on the half-width of the fluorescence transient, which was predicted by a five–binding site model of a Ca2+ sensor having relatively high affinity (Kd 13 μM). Very fast [Ca2+] transients (half-width <0.5 ms) evoked EPSCs similar to those elicited by a single action potential (AP) in the same synapse. Triggering release with dual [Ca2+] transients of variable amplitudes demonstrated the supralinear transfer function of the sensor. The sensitivity of release to the time course of the [Ca2+] transient may contribute to mechanisms by which the presynaptic AP waveform controls synaptic strength.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Transient [Ca2+] elevations evoked by photolysis of DM-nitrophen in the presence of Ca2+ buffers.
Figure 2: Dependence of glutamate release on the time course of the [Ca2+] transient.
Figure 3: Predictions of a kinetic model of the Ca2+ sensor.
Figure 4: Mimicking AP-evoked release with fast [Ca2+] transients.
Figure 5: Release triggered by paired [Ca2+] transients.
Figure 6: Simulated impact of [Ca2+] profile on EPSC amplitudes.
Figure 7: Comparison of different Ca2+ sensor models.

Similar content being viewed by others

References

  1. Katz, B. & Miledi, R. The measurement of synaptic delay, and the time course of acetylcholine release at the neuromuscular junction. Proc. R. Soc. Lond. B 161, 483–495 (1965).

    Article  CAS  Google Scholar 

  2. Barrett, E.F. & Stevens, C.F. The kinetics of transmitter release at the frog neuromuscular junction. J. Physiol. (Lond.) 227, 691–708 (1972).

    Article  CAS  Google Scholar 

  3. Zucker, R.S. Exocytosis: a molecular and physiological perspective. Neuron 17, 1049–1055 (1996).

    Article  CAS  Google Scholar 

  4. Neher, E. Vesicle pools and Ca2+ microdomains: new tools for understanding their roles in neurotransmitter release. Neuron 20, 389–399 (1998).

    Article  CAS  Google Scholar 

  5. Augustine, G.J., Santamaria, F. & Tanaka, K. Local calcium signaling in neurons. Neuron 40, 331–346 (2003).

    Article  CAS  Google Scholar 

  6. Roberts, W.M., Jacobs, R.A. & Hudspeth, A.J. Colocalization of ion channels involved in frequency selectivity and synaptic transmission at presynaptic active zones of hair cells. J. Neurosci. 10, 3664–3684 (1990).

    Article  CAS  Google Scholar 

  7. Llinás, R., Sugimori, M. & Silver, R.B. Microdomains of high calcium concentration in a presynaptic terminal. Science 256, 677–679 (1992).

    Article  Google Scholar 

  8. DiGregorio, D.A., Peskoff, A. & Vergara, J.L. Measurement of action potential-induced presynaptic calcium domains at a cultured neuromuscular junction. J. Neurosci. 19, 7846–7859 (1999).

    Article  CAS  Google Scholar 

  9. Yazejian, B., Sun, X.P. & Grinnell, A.D. Tracking presynaptic Ca2+ dynamics during neurotransmitter release with Ca2+-activated K+ channels. Nat. Neurosci. 3, 566–571 (2000).

    Article  CAS  Google Scholar 

  10. Augustine, G.J., Charlton, M.P. & Smith, S.J. Calcium entry and transmitter release at voltage-clamped nerve terminals of squid. J. Physiol. (Lond.) 367, 163–181 (1985).

    Article  CAS  Google Scholar 

  11. Wheeler, D.B., Randall, A. & Tsien, R.W. Changes in action potential duration alter reliance of excitatory synaptic transmission on multiple types of Ca2+ channels in rat hippocampus. J. Neurosci. 16, 2226–2237 (1996).

    Article  CAS  Google Scholar 

  12. Borst, J.G.G. & Sakmann, B. Effect of changes in action potential shape on calcium currents and transmitter release in a calyx-type synapse of the rat auditory brainstem. Phil. Trans. R. Soc. Lond. B 354, 347–355 (1999).

    Article  CAS  Google Scholar 

  13. Sabatini, B.L. & Regehr, W.G. Control of neurotransmitter release by presynaptic waveform at the granule cell to Purkinje cell synapse. J. Neurosci. 17, 3425–3435 (1997).

    Article  CAS  Google Scholar 

  14. Bollmann, J.H., Sakmann, B. & Borst, J.G.G. Calcium sensitivity of glutamate release in a calyx-type terminal. Science 289, 953–957 (2000).

    Article  CAS  Google Scholar 

  15. Schneggenburger, R. & Neher, E. Intracellular calcium dependence of transmitter release rates at a fast central synapse. Nature 406, 889–893 (2000).

    Article  CAS  Google Scholar 

  16. Datyner, N.B. & Gage, P.W. Phasic secretion of acetylcholine at a mammalian neuromuscular junction. J. Physiol. (Lond.) 303, 299–314 (1980).

    Article  CAS  Google Scholar 

  17. Van der Kloot, W. The kinetics of quantal releases during end-plate currents at the frog neuromuscular junction. J. Physiol. (Lond.) 402, 605–626 (1988).

    Article  CAS  Google Scholar 

  18. Lin, J.-W. & Faber, D.S. Modulation of synaptic delay during synaptic plasticity. Trends Neurosci. 25, 449–455 (2002).

    Article  CAS  Google Scholar 

  19. Zucker, R.S. & Regehr, W.G. Short-term synaptic plasticity. Annu. Rev. Physiol. 64, 355–405 (2002).

    Article  CAS  Google Scholar 

  20. Rozov, A., Burnashev, N., Sakmann, B. & Neher, E. Transmitter release modulation by intracellular Ca2+ buffers in facilitating and depressing nerve terminals of pyramidal cells in layer 2/3 of the rat neocortex indicates a target cell-specific difference in presynaptic calcium dynamics. J. Physiol. (Lond.) 531, 807–826 (2001).

    Article  CAS  Google Scholar 

  21. Blatow, M., Caputi, A., Burnashev, N., Monyer, H. & Rozov, A. Ca2+ buffer saturation underlies paired pulse facilitation in calbindin-D28k-containing terminals. Neuron 38, 79–88 (2003).

    Article  CAS  Google Scholar 

  22. Felmy, F., Neher, E. & Schneggenburger, R. Probing the intracellular calcium sensitivity of transmitter release during synaptic facilitation. Neuron 37, 801–811 (2003).

    Article  CAS  Google Scholar 

  23. Bertram, R., Sherman, A. & Stanley, E.F. Single-domain/bound calcium hypothesis of transmitter release and facilitation. J. Neurophysiol. 75, 1919–1931 (1996).

    Article  CAS  Google Scholar 

  24. Yamada, W.M. & Zucker, R.S. Time course of transmitter release calculated from simulations of a calcium diffusion model. Biophys. J. 61, 671–682 (1992).

    Article  CAS  Google Scholar 

  25. Atluri, P.P. & Regehr, W.G. Determinants of the time course of facilitation at the granule cell to Purkinje cell synapse. J. Neurosci. 16, 5661–5671 (1996).

    Article  CAS  Google Scholar 

  26. Matveev, V., Sherman, A. & Zucker, R.S. New and corrected simulations of synaptic facilitation. Biophys. J. 83, 1368–1373 (2002).

    Article  CAS  Google Scholar 

  27. Heidelberger, R., Heinemann, C., Neher, E. & Matthews, G. Calcium dependence of the rate of exocytosis in a synaptic terminal. Nature 371, 513–515 (1994).

    Article  CAS  Google Scholar 

  28. Hsu, S.-F., Augustine, G.J. & Jackson, M.B. Adaptation of Ca2+-triggered exocytosis in presynaptic terminals. Neuron 17, 501–512 (1996).

    Article  CAS  Google Scholar 

  29. Landò, L. & Zucker, R.S. Ca2+ cooperativity in neurosecretion measured using photolabile Ca2+ chelators. J. Neurophysiol. 72, 825–830 (1994).

    Article  Google Scholar 

  30. Helmchen, F., Borst, J.G.G. & Sakmann, B. Calcium dynamics associated with a single action potential in a CNS presynaptic terminal. Biophys. J. 72, 1458–1471 (1997).

    Article  CAS  Google Scholar 

  31. Xu, T., Naraghi, M., Kang, H. & Neher, E. Kinetic studies of Ca2+ binding and Ca2+ clearance in the cytosol of adrenal chromaffin cells. Biophys. J. 73, 532–545 (1997).

    Article  CAS  Google Scholar 

  32. Dodge, F.A., Jr & Rahamimoff, R. Co-operative action of calcium ions in transmitter release at the neuromuscular junction. J. Physiol. (Lond.) 193, 419–432 (1967).

    Article  CAS  Google Scholar 

  33. Felmy, F., Neher, E. & Schneggenburger, R. The timing of phasic transmitter release is Ca2+-dependent and lacks a direct influence of presynaptic membrane potential. Proc. Natl. Acad. Sci. USA 100, 15200–15205 (2003).

    Article  CAS  Google Scholar 

  34. Neher, E. & Sakaba, T. Combining deconvolution and noise analysis for the estimation of transmitter release rates at the calyx of Held. J. Neurosci. 21, 444–461 (2001).

    Article  CAS  Google Scholar 

  35. Sätzler, K. et al. Three-dimensional reconstruction of a calyx of Held and its postsynaptic principal neuron in the medial nucleus of the trapezoid body. J. Neurosci. 22, 10567–10579 (2002).

    Article  Google Scholar 

  36. Slutsky, I. et al. Use of knockout mice reveals involvement of M2-muscarinic receptors in control of the kinetics of acetylcholine release. J. Neurophysiol. 89, 1954–1967 (2003).

    Article  CAS  Google Scholar 

  37. Wu, L.-G. & Borst, J.G.G. The reduced release probability of releasable vesicles during recovery from short-term synaptic depression. Neuron 23, 821–832 (1999).

    Article  CAS  Google Scholar 

  38. Augustine, G.J. Regulation of transmitter release at the squid giant synapse by presynaptic delayed rectifier potassium current. J. Physiol. (Lond.) 431, 343–364 (1990).

    Article  CAS  Google Scholar 

  39. Byrne, J.H. & Kandel, E.R. Presynaptic facilitation revisited: state and time dependence. J. Neurosci. 16, 425–435 (1996).

    Article  CAS  Google Scholar 

  40. Geiger, J.R.P. & Jonas, P. Dynamic control of presynaptic Ca2+ inflow by fast-inactivating K+ channels in hippocampal mossy fiber boutons. Neuron 28, 927–939 (2000).

    Article  CAS  Google Scholar 

  41. Meinrenken, C.J., Borst, J.G.G. & Sakmann, B. Calcium secretion coupling at calyx of Held governed by nonuniform channel-vesicle topography. J. Neurosci. 22, 1648–1667 (2002).

    Article  CAS  Google Scholar 

  42. Fernández-Chacón, R. et al. Synaptotagmin I functions as a calcium regulator of release probability. Nature 410, 41–49 (2001).

    Article  Google Scholar 

  43. Atwood, H.L. & Karunanithi, S. Diversification of synaptic strength: presynaptic elements. Nat. Rev. Neurosci. 3, 497–516 (2002).

    Article  CAS  Google Scholar 

  44. Jahn, R., Lang, T. & Südhof, T.C. Membrane fusion. Cell 112, 519–533 (2003).

    Article  CAS  Google Scholar 

  45. Millet, O., Bernadó, P., Garcia, J., Rizo, J. & Pons, M. NMR measurement of the off rate from the first calcium-binding site of the synaptotagmin I C2A domain. FEBS Lett. 516, 93–96 (2002).

    Article  CAS  Google Scholar 

  46. Davis, A.F. et al. Kinetics of synaptotagmin responses to Ca2+ and assembly with the core SNARE complex onto membranes. Neuron 24, 363–376 (1999).

    Article  CAS  Google Scholar 

  47. Borst, J.G.G. & Sakmann, B. Calcium current during a single action potential in a large presynaptic terminal of the rat brainstem. J. Physiol. (Lond.) 506, 143–157 (1998).

    Article  CAS  Google Scholar 

  48. Taschenberger, H. & von Gersdorff, H. Fine-tuning an auditory synapse for speed and fidelity: developmental changes in presynaptic waveform, EPSC kinetics, and synaptic plasticity. J. Neurosci. 20, 9162–9173 (2000).

    Article  CAS  Google Scholar 

  49. Pattillo, J.M., Artim, D.E., Simples, J.E., Jr & Meriney, S.D. Variations in onset of action potential broadening: effects on calcium current studied in chick ciliary ganglion neurones. J. Physiol. (Lond.) 514, 719–728 (1999).

    Article  CAS  Google Scholar 

  50. Ishikawa, T. et al. Distinct roles of Kv1 and Kv3 potassium channels at the calyx of Held presynaptic terminal. J. Neurosci. 23, 10445–10453 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J.G.G. Borst, R.M. Bruno, E. Neher and R.S. Zucker for helpful discussions and comments on an earlier version of the manuscript, and M. Kaiser, R. Rödel and K. Schmidt for expert technical assistance. We consistently used a calibrated lot (#3491) of OGB-5N, of which a part was kindly provided by T. Euler and K. Svoboda.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johann H Bollmann.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

[Ca2+] relaxation model (PDF 238 kb)

Supplementary Fig. 2

Correlation between EPSC amplitude and the peak and half-width of ΔF/F transients. (PDF 340 kb)

Supplementary Fig. 3

Ca2+ sensor model. (PDF 237 kb)

Supplementary Table 1

Kinetic rate constants used in the [Ca2+] relaxation model. (PDF 103 kb)

Supplementary Methods (PDF 92 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bollmann, J., Sakmann, B. Control of synaptic strength and timing by the release-site Ca2+ signal. Nat Neurosci 8, 426–434 (2005). https://doi.org/10.1038/nn1417

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1417

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing