Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cytoplasmic domain structures of Kir2.1 and Kir3.1 show sites for modulating gating and rectification

An Erratum to this article was published on 01 June 2005

Abstract

N- and C-terminal cytoplasmic domains of inwardly rectifying K (Kir) channels control the ion-permeation pathway through diverse interactions with small molecules and protein ligands in the cytoplasm. Two new crystal structures of the cytoplasmic domains of Kir2.1 (Kir2.1L) and the G protein–sensitive Kir3.1 (Kir3.1S) channels in the absence of PIP2 show the cytoplasmic ion-permeation pathways occluded by four cytoplasmic loops that form a girdle around the central pore (G-loop). Significant flexibility of the pore-facing G-loop of Kir2.1L and Kir3.1S suggests a possible role as a diffusion barrier between cytoplasmic and transmembrane pores. Consistent with this, mutations of the G-loop disrupted gating or inward rectification. Structural comparison shows a di-aspartate cluster on the distal end of the cytoplasmic pore of Kir2.1L that is important for modulating inward rectification. Taken together, these results suggest the cytoplasmic domains of Kir channels undergo structural changes to modulate gating and inward rectification.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Sequence alignment and size-exclusion chromatograms of Kir3.1S, Kir2.1L, and KirBac1.1 with secondary structure elements noted.
Figure 2: Structures of Kir3.1S and Kir2.1L.
Figure 3: Kir3.1S and Kir2.1L in comparison to KirBac1.1.
Figure 4: Mutations in G-loop disrupt gating and inward rectification.
Figure 5: Substitution of glycine at Ala306 of Kir2.1 does not alter PIP2 affinity.
Figure 6: Mutation of di-aspartate cluster in Kir2.1 changes inward rectification.

Similar content being viewed by others

References

  1. Lopatin, A.N., Makhina, E.N. & Nichols, C.G. Potassium channel block by cytoplasmic polyamines as the mechanism of intrinsic rectification. Nature 372, 366–369 (1994).

    Article  CAS  Google Scholar 

  2. Matsuda, H., Saigusa, A. & Irisawa, H. Ohmic conductance through the inwardly rectifying K channel and blocking by internal Mg2+. Nature 325, 156–159 (1987).

    Article  CAS  Google Scholar 

  3. Nichols, C.G. & Lopatin, A.N. Inward rectifier potassium channels. Annu. Rev. Physiol. 59, 171–191 (1997).

    Article  CAS  Google Scholar 

  4. Signorini, S., Liao, Y.J., Duncan, S.A., Jan, L.Y. & Stoffel, M. Normal cerebellar development but susceptibility to seizures in mice lacking G protein-coupled, inwardly rectifying K+ channel GIRK2. Proc. Natl. Acad. Sci. USA 94, 923–927 (1997).

    Article  CAS  Google Scholar 

  5. Wickman, K., Nemec, J., Gendler, S.J. & Clapham, D.E. Abnormal heart rate regulation in GIRK4 knockout mice. Neuron 20, 103–114 (1998).

    Article  CAS  Google Scholar 

  6. Derst, C. et al. Mutations in the ROMK gene in antenatal Bartter syndrome are associated with impaired K+ channel function. Biochem. Biophys. Res. Commun. 230, 641–645 (1997).

    Article  CAS  Google Scholar 

  7. Plaster, N.M. et al. Mutations in Kir2.1 cause the developmental and episodic electrical phenotypes of Andersen's syndrome. Cell 105, 511–519 (2001).

    Article  CAS  Google Scholar 

  8. Lu, Z. & MacKinnon, R. Electrostatic tuning of Mg2+ affinity in an inward-rectifier K+ channel. Nature 371, 243–246 (1994).

    Article  CAS  Google Scholar 

  9. Yang, J., Jan, Y.N. & Jan, L.Y. Control of rectification and permeation by residues in two distinct domains in an inward rectifier K+ channel. Neuron 14, 1047–1054 (1995).

    Article  CAS  Google Scholar 

  10. Kubo, Y. & Murata, Y. Control of rectification and permeation by two distinct sites after the second transmembrane region in Kir2.1 K+ channel. J. Physiol. (Lond.) 531, 645–660 (2001).

    Article  CAS  Google Scholar 

  11. Döring, F. et al. The epithelial inward rectifier channel Kir7.1 displays unusual K+ permeation properties. J. Neurosci. 18, 8625–8636 (1998).

    Article  Google Scholar 

  12. Slesinger, P.A. et al. Functional effects of the mouse weaver mutation on G protein-gated inwardly rectifying K+ channels. Neuron 16, 321–331 (1996).

    Article  CAS  Google Scholar 

  13. John, S.A., Xie, L-H. & Weiss, J.N. Mechanism of inward rectification in Kir channels. J. Gen. Physiol. 123, 623–625 (2004).

    Article  CAS  Google Scholar 

  14. Huang, C-L., Feng, S. & Hilgemann, D.W. Direct activation of inward rectifier potassium channels by PIP2 and its stabilization by Gβγ. Nature 391, 803–806 (1998).

    Article  CAS  Google Scholar 

  15. Lopes, C.M. et al. Alterations in conserved Kir channel-PIP2 interactions underlie channelopathies. Neuron 34, 933–944 (2002).

    Article  CAS  Google Scholar 

  16. Shyng, S-L., Cukras, C.A., Harwood, J. & Nichols, C.G. Structural determinants of PIP2 regulation of inward rectifier KATP channels. J. Gen. Physiol. 116, 599–607 (2000).

    Article  CAS  Google Scholar 

  17. Nishida, M. and MacKinnon, R. Structural basis of inward rectification. Cytoplasmic pore of the G protein-gated inward rectifier GIRK1 at 1.8 A resolution. Cell 111, 957–965 (2002).

    Article  CAS  Google Scholar 

  18. Kuo, A. et al. Crystal structure of the potassium channel KirBac1.1 in the closed state. Science 300, 1922–1926 (2003).

    Article  CAS  Google Scholar 

  19. Proks, P., Antcliff, J.F. & Ashcroft, F.M. The ligand-sensitive gate of a potassium channel lies close to the selectivity filter. EMBO Rep. 4, 70–75 (2003).

    Article  CAS  Google Scholar 

  20. Lu, T. et al. Probing ion permeation and gating in a K+ channel with backbone mutations in the selectivity filter. Nat. Neurosci. 4, 239–246 (2001).

    Article  CAS  Google Scholar 

  21. Lu, T., Zhu, Y.-G. & Yang, J. Cytoplasmic amino and carboxyl domains form a wide intracellular vestibule in an inwardly rectifying potassium channel. Proc. Natl. Acad. Sci. USA 96, 9926–9931 (1999).

    Article  CAS  Google Scholar 

  22. Miyazawa, A., Fujiyoshi, Y. & Unwin, N. Structure and gating mechanism of the acetylcholine receptor pore. Nature 423, 949–955 (2003).

    Article  CAS  Google Scholar 

  23. Huang, C.L., Slesinger, P.A., Casey, P.J., Jan, Y.N. & Jan, L.Y. Evidence that direct binding of Gβγ to the GIRK1 G protein-gated inwardly rectifying K+ channel is important for channel activation. Neuron 15, 1133–1143 (1995).

    Article  CAS  Google Scholar 

  24. Schulte, U., Hahn, H., Wiesinger, H., Ruppersberg, J.P. & Fakler, B. pH-dependent gating of ROMK (Kir1.1) channels involves conformational changes in both N and C termini. J. Biol. Chem. 273, 34575–34579 (1998).

    Article  CAS  Google Scholar 

  25. Corey, S. & Clapham, D.E. Identification of native atrial G-protein-regulated inwardly rectifying K+ (GIRK4) channel homomultimers. J. Biol. Chem. 273, 27499–27504 (1998).

    Article  CAS  Google Scholar 

  26. Inanobe, A. et al. Characterization of G- protein-gated K+ channels composed of Kir3.2 subunits in dopaminergic neurons of the substantia nigra. J. Neurosci. 19, 1006–1017 (1999).

    Article  CAS  Google Scholar 

  27. Armstrong, N., Sun, Y., Chen, G.Q. & Gouaux, E. Structure of a glutamate-receptor ligand-binding core in complex with kainate. Nature 395, 913–917 (1998).

    Article  CAS  Google Scholar 

  28. Zhou, W., Qian, Y., Kunjilwar, K., Pfaffinger, P.J. & Choe, S. Structural insights into the functional interaction of KChIP1 with Shal-type K channels. Neuron 41, 573–586 (2004).

    Article  CAS  Google Scholar 

  29. Lu, T., Nguyen, B., Zhang, X. & Yang, J. Architecture of a K+ channel inner pore revealed by stoichiometric covalent modification. Neuron 22, 571–580 (1999).

    Article  CAS  Google Scholar 

  30. Riven, I., Kalmanzon, E., Segev, L. & Reuveny, E. Conformational rearrangements associated with the gating of the G protein-coupled potassium channel revealed by FRET microscopy. Neuron 38, 225–235 (2003).

    Article  CAS  Google Scholar 

  31. Cohen, N.A., Brenman, J.E., Snyder, S.H. & Bredt, D.S. Binding of the inward rectifier K+ channel Kir 2.3 to PSD-95 is regulated by protein kinase A phosphorylation. Neuron 17, 759–767 (1996).

    Article  CAS  Google Scholar 

  32. Fakler, B., Bond, C.T., Adelman, J.P. & Ruppersberg, J.P. Heterooligomeric assembly of inward-rectifier K+ channels from subunits of different subfamilies: Kir2.1 (IRK1) and Kir4.1 (BIR10). Pflugers Archiv. 433, 77–83 (1996).

    Article  CAS  Google Scholar 

  33. Pearson, W.L. & Nichols, C.G. Block of the Kir2.1 channel pore by alkylamine analogues of endogenous polyamines. J. Gen. Physiol. 112, 351–363 (1998).

    Article  CAS  Google Scholar 

  34. Ishihara, K. & Ehara, T. Two modes of polyamine block regulating the cardiac inward rectifier K+ current IK1 as revealed by a study of the Kir2.1 channel expressed i7n a human cell line. J. Physiol. (Lond.) 556, 61–78 (2004).

    Article  CAS  Google Scholar 

  35. Bendahhou, S. et al. Defective potassium channel Kir2.1 trafficking underlies andersen-tawil syndrome. J. Biol. Chem. 278, 51779–51785 (2003).

    Article  CAS  Google Scholar 

  36. Hosaka, Y. et al. Function, subcellular localization and assembly of a novel mutation of KCNJ2 in Andersen's syndrome. J. Mol. Cell. Cardiol. 35, 409–415 (2003).

    Article  CAS  Google Scholar 

  37. Preisig-Muller, R. et al. Heteromerization of Kir2.x potassium channels contributes to the phenotype of Andersen's syndrome. Proc. Natl. Acad. Sci. USA 99, 7774–7779 (2002).

    Article  CAS  Google Scholar 

  38. Garneau, L., Klein, H., Parent, L. & Sauve, R. Contribution of cytosolic cysteine residues to the gating properties of the Kir2.1 inward rectifier. Biophys. J. 84, 3717–3729 (2003).

    Article  CAS  Google Scholar 

  39. Chen, L. et al. A glutamate residue at the C terminus regulates activity of inward rectifier K+ channels: implication for Andersen's syndrome. Proc. Natl. Acad. Sci. USA 99, 8430–8435 (2002).

    Article  CAS  Google Scholar 

  40. Chang, H.-K., Yeh, S.-H., Shieh, R-C. (2005) A ring of negative charges in the intracellular vestibule of Kir2.1 channel modulates K+ permeation. Biophys. J. 88, 243–254 (2005).

    Article  CAS  Google Scholar 

  41. Clancy, S.M. et al. Pertussis-toxin-sensitive G(alpha) subunits selectively bind to C-terminal domain of neuronal GIRK channels: evidence for a heterotrimeric G-protein-channel complex. Mol. Cell. Neurosci. 28, 375–389 (2005).

    Article  CAS  Google Scholar 

  42. Ivanina, T. et al. Gi1 and Gi3 differentially interact with, and regulate, the G Protein-activated K+ channel. J. Biol. Chem. 279, 17260–17268 (2004).

    Article  CAS  Google Scholar 

  43. Guo, Y., Waldron, G.J. & Murrell-Lagnado, R.D. A role for the middle C-terminus of GIRK channels in regulating gating. J. Biol. Chem. 277, 48289–48294 (2002).

    Article  CAS  Google Scholar 

  44. Xiao, J., Zhen, X.G. & Yang, J. Localization of PIP2 activation gate in inward rectifier K+ channels. Nat. Neurosci. 6, 811–818 (2003).

    Article  CAS  Google Scholar 

  45. Phillips, L.R., Enkvetchakul, D. & Nichols, C.G. Gating dependence of inner pore access in inward rectifier K+ channels. Neuron 37, 953–962 (2003).

    Article  Google Scholar 

  46. Roosild, T.P., Le, T.-K. & Choe, S. Cytoplasmic gatekeepers of K channel flux: a structural perspective. Trends Biochem. Sci. 29, 39–45 (2004).

    Article  CAS  Google Scholar 

  47. Jiang, Y. et al. The open pore conformation of potassium channels. Nature 417, 523–526 (2002).

    Article  CAS  Google Scholar 

  48. Roosild, T.P., Miller, S., Booth, I.R. & Choe, S. A mechanism of regulating transmembrane potassium flux through a ligand-mediated conformational switch. Cell 109, 781–791 (2002).

    Article  CAS  Google Scholar 

  49. Kubo, Y., Baldwin, T.J., Jan, Y.N. & Jan, L.Y. Primary structure and functional expression of a mouse inward rectifier potassium channel. Nature 362, 127–133 (1993).

    Article  CAS  Google Scholar 

  50. Hilgemann, D. The giant membrane patch. in Single-Channel Recording 2nd edn. (eds. Sakmann, B. & Neher, E.) 307–327 (Plenum, New York, 1995).

    Chapter  Google Scholar 

Download references

Acknowledgements

We thank D. Clapham, M. Lazdunski and S. Hebert for GIRK4, GIRK2 and ROMK1 cDNAs, respectively. We also thank D. Kaiser for analytical ultracentrifugation, C. Park for mass spectroscopy, and the staff at ALS and SSRL for X-ray data collection. This work was supported by grants from the National Institutes of Health (P.A.S & S.C.) and the McKnight Endowment for Neuroscience (P.A.S). S.C. acknowledges the support from the American Heart Association.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Paul A Slesinger or Senyon Choe.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Size chromatograms of Kir3.1S, Kir2.1L, and Kir3.2's N- and C-terminal domains expressed dicistronically. (PDF 209 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pegan, S., Arrabit, C., Zhou, W. et al. Cytoplasmic domain structures of Kir2.1 and Kir3.1 show sites for modulating gating and rectification. Nat Neurosci 8, 279–287 (2005). https://doi.org/10.1038/nn1411

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1411

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing