Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Medial prefrontal cortex determines how stressor controllability affects behavior and dorsal raphe nucleus


The degree of behavioral control that an organism has over a stressor is a potent modulator of the stressor's impact; uncontrollable stressors produce numerous outcomes that do not occur if the stressor is controllable. Research on controllability has focused on brainstem nuclei such as the dorsal raphe nucleus (DRN). Here we find that the infralimbic and prelimbic regions of the ventral medial prefrontal cortex (mPFCv) in rats detect whether a stressor is under the organism's control. When a stressor is controllable, stress-induced activation of the DRN is inhibited by the mPFCv, and the behavioral sequelae of uncontrollable stress are blocked. This suggests a new function for the mPFCv and implies that the presence of control inhibits stress-induced neural activity in brainstem nuclei, in contrast to the prevalent view that such activity is induced by a lack of control.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Efficiency of wheel-turn escape behavior during exposure to controllable tailshock in rats that had received mPFCv muscimol or vehicle 60 min before the shock session.
Figure 2: Placements of microinjection cannula and microdialysis probe.
Figure 3: Percentage of neurons double-labeled for 5-HT and c-Fos (mean ± s.e.m).
Figure 4: 5-HT as a percentage of baseline in the DRN.
Figure 5: The mean (± s.e.m) number of 8-s intervals spent freezing, in 2-min blocks, after two footshocks 24 h after stressor exposure.
Figure 6: Mean (± s.e.m) shuttlebox escape latencies across blocks of five shuttlebox FR-2 escape trails 24 h after stressor exposure.


  1. 1

    Weiss, J.M. & Simson, P.G. Depression in an animal model: focus on the locus ceruleus. Ciba Found. Symp. 123, 191–215 (1986).

    CAS  PubMed  Google Scholar 

  2. 2

    Basoglu, M. & Mineka, S. in Torture and its Consequences: Current Treatment Approaches (eds. Basoglu, M. & Mineka, S.) 182–225 (Cambridge Univ. Press, Cambridge, Massachusetts, USA, 1992).

    Google Scholar 

  3. 3

    Seligman, M.E. & Maier, S.F. Failure to escape traumatic shock. J. Exp. Psychol. 74, 1–9 (1967).

    CAS  Article  Google Scholar 

  4. 4

    Weiss, J.M. Effects of coping responses on stress. J. Comp. Physiol. Psychol. 65, 251–260 (1968).

    CAS  Article  Google Scholar 

  5. 5

    Maier, S.F. & Watkins, L.R. Stressor controllability, anxiety, and serotonin. Cognit. Ther. Res. 22, 595–613 (1998).

    Article  Google Scholar 

  6. 6

    Grahn, R.E. et al. Activation of serotonin-immunoreactive cells in the dorsal raphe nucleus in rats exposed to an uncontrollable stressor. Brain Res. 826, 35–43 (1999).

    CAS  Article  Google Scholar 

  7. 7

    Maswood, S., Barter, J.E., Watkins, L.R. & Maier, S.F. Exposure to inescapable but not escapable shock increases extracellular levels of 5-HT in the dorsal raphe nucleus of the rat. Brain Res. 783, 115–120 (1998).

    CAS  Article  Google Scholar 

  8. 8

    Amat, J., Matus-Amat, P., Watkins, L.R. & Maier, S.F. Escapable and inescapable stress differentially alter extracellular levels of 5-HT in the basolateral amygdala of the rat. Brain Res. 812, 113–120 (1998).

    CAS  Article  Google Scholar 

  9. 9

    Bland, S.T. et al. Stressor controllability modulates stress-induced dopamine and serotonin efflux and morphine-induced serotonin efflux in the medial prefrontal cortex. Neuropsychopharmacology 28, 1589–1596 (2003).

    CAS  Article  Google Scholar 

  10. 10

    Bland, S.T., Twining, C., Watkins, L.R. & Maier, S.F. Stressor controllability modulates stress-induced serotonin but not dopamine efflux in the nucleus accumbens shell. Synapse 49, 206–208 (2003).

    CAS  Article  Google Scholar 

  11. 11

    Maier, S.F., Grahn, R.E. & Watkins, L.R. 8-OH-DPAT microinjected in the region of the dorsal raphe nucleus blocks and reverses the enhancement of fear conditioning and interference with escape produced by exposure to inescapable shock. Behav. Neurosci. 109, 404–412 (1995).

    CAS  Article  Google Scholar 

  12. 12

    Weiss, J.M., Bailey, W.H., Pohorecky, L.A., Korzeniowski, D. & Grillione, G. Stress-induced depression of motor activity correlates with regional changes in brain norepinephrine but not in dopamine. Neurochem. Res. 5, 9–22 (1980).

    CAS  Article  Google Scholar 

  13. 13

    Grahn, R.E. et al. Blockade of alpha1 adrenoreceptors in the dorsal raphe nucleus prevents enhanced conditioned fear and impaired escape performance following uncontrollable stressor exposure in rats. Behav. Brain Res. 134, 387–392 (2002).

    CAS  Article  Google Scholar 

  14. 14

    Mesulam, M.M. in Principles of Frontal Lobe Function (eds. Stuss, D.T. & Knight, R.T.) 8–30 (Oxford Univ. Press, Oxford, 2002).

    Book  Google Scholar 

  15. 15

    Davidson, R.J. Anxiety and affective style: role of prefrontal cortex and amygdala. Biol. Psychiatry 51, 68–80 (2002).

    Article  Google Scholar 

  16. 16

    Peyron, C., Petit, J.M., Rampon, C., Jouvet, M. & Luppi, P.H. Forebrain afferents to the rat dorsal raphe nucleus demonstrated by retrograde and anterograde tracing methods. Neuroscience 82, 443–468 (1998).

    CAS  Article  Google Scholar 

  17. 17

    Vertes, R.P. Differential projections of the infralimbic and prelimbic cortex in the rat. Synapse 51, 32–58 (2004).

    CAS  Article  Google Scholar 

  18. 18

    Jankowski, M.P. & Sesack, S.R. Prefrontal cortical projections to the rat dorsal raphe nucleus: ultrastructural features and associations with serotonin and gamma-aminobutyric acid neurons. J. Comp. Neurol. 468, 518–529 (2004).

    CAS  Article  Google Scholar 

  19. 19

    Hajos, M., Richards, C.D., Szekely, A.D. & Sharp, T. An electrophysiological and neuroanatomical study of the medial prefrontal cortical projection to the midbrain raphe nuclei in the rat. Neuroscience 87, 95–108 (1998).

    CAS  Article  Google Scholar 

  20. 20

    Robbins, T.W. From arousal to cognition: the integrative position of the prefrontal cortex. Prog. Brain Res. 126, 469–483 (2000).

    CAS  Article  Google Scholar 

  21. 21

    Hoffman, G.E., Smith, M.S. & Verbalis, J.G. c-Fos and related immediate early gene products as markers of activity in neuroendocrine systems. Front. Neuroendocrinol. 14, 173–213 (1993).

    CAS  Article  Google Scholar 

  22. 22

    Tao, R., Ma, Z. & Auerbach, S.B. Differential effect of local infusion of serotonin reuptake inhibitors in the raphe versus forebrain and the role of depolarization-induced release in increased extracellular serotonin. J. Pharmacol. Exp. Ther. 294, 571–579 (2000).

    CAS  PubMed  Google Scholar 

  23. 23

    Maier, S.F. Learned helplessness and animal models of depression. Prog. Neuropsychopharmacol. Biol. Psychiatry 8, 435–446 (1984).

    CAS  Article  Google Scholar 

  24. 24

    Maier, S.F. Role of fear in mediating shuttle escape learning deficit produced by inescapable shock. J. Exp. Psychol. Anim. Behav. Process. 16, 137–149 (1990).

    CAS  Article  Google Scholar 

  25. 25

    Fanselow, M.S., Lester, L.S. & Helmstetter, F.J. Changes in feeding and foraging patterns as an antipredator defensive strategy: a laboratory simulation using aversive stimulation in a closed economy. J. Exp. Anal. Behav. 50, 361–374 (1988).

    CAS  Article  Google Scholar 

  26. 26

    Amat, J. et al. The role of the habenular complex in the elevation of dorsal raphe nucleus serotonin and the changes in the behavioral responses produced by uncontrollable stress. Brain Res. 917, 118–126 (2001).

    CAS  Article  Google Scholar 

  27. 27

    Puig, M.V., Artigas, F. & Celada, P. Modulation of the activity of pyramidal neurons in rat prefrontal cortex by raphe stimulation in vivo: involvement of serotonin and GABA. Cereb Cortex 15, 1–14 (2004).

    Article  Google Scholar 

  28. 28

    McDonald, A.J., Mascagni, F. & Guo, L. Projections of the medial and lateral prefrontal cortices to the amygdala: a Phaseolus vulgaris leucoagglutinin study in the rat. Neuroscience 71, 55–75 (1996).

    CAS  Article  Google Scholar 

  29. 29

    Maier, S.F. et al. The role of the amygdala and dorsal raphe nucleus in mediating the behavioral consequences of inescapable shock. Behav. Neurosci. 107, 377–388 (1993).

    CAS  Article  Google Scholar 

  30. 30

    Graeff, F.G., Guimaraes, F.S., De Andrade, T.G. & Deakin, J.F. Role of 5-HT in stress, anxiety, and depression. Pharmacol. Biochem. Behav. 54, 129–141 (1996).

    CAS  Article  Google Scholar 

  31. 31

    Yin, H.H., Knowlton, B.J. & Balleine, B.W. Lesions of dorsolateral striatum preserve outcome expectancy but disrupt habit formation in instrumental learning. Eur. J. Neurosci. 19, 181–189 (2004).

    Article  Google Scholar 

  32. 32

    Corbit, L.H. & Balleine, B.W. The role of prelimbic cortex in instrumental conditioning. Behav. Brain Res. 146, 145–157 (2003).

    Article  Google Scholar 

  33. 33

    Balleine, B.W. & Dickinson, A. Goal-directed instrumental action: contingency and incentive learning and their cortical substrates. Neuropharmacology 37, 407–419 (1998).

    CAS  Article  Google Scholar 

  34. 34

    Quirk, G.J., Russo, G.K., Barron, J.L. & Lebron, K. The role of ventromedial prefrontal cortex in the recovery of extinguished fear. J. Neurosci. 20, 6225–6231 (2000).

    CAS  Article  Google Scholar 

  35. 35

    Quirk, G.J. Memory for extinction of conditioned fear is long-lasting and persists following spontaneous recovery. Learn. Mem. 9, 402–407 (2002).

    Article  Google Scholar 

  36. 36

    Morgan, M.A., Schulkin, J. & LeDoux, J.E. Ventral medial prefrontal cortex and emotional perseveration: the memory for prior extinction training. Behav. Brain Res. 146, 121–130 (2003).

    Article  Google Scholar 

  37. 37

    Quirk, G.J. & Gehlert, D.R. Inhibition of the amygdala: key to pathological states? Ann. NY Acad. Sci. 985, 263–272 (2003).

    CAS  Article  Google Scholar 

  38. 38

    Royer, S. & Pare, D. Bidirectional synaptic plasticity in intercalated amygdala neurons and the extinction of conditioned fear responses. Neuroscience 115, 455–462 (2002).

    CAS  Article  Google Scholar 

  39. 39

    Bremner, J.D. et al. Neural correlates of exposure to traumatic pictures and sound in Vietnam combat veterans with and without posttraumatic stress disorder: a positron emission tomography study. Biol. Psychiatry 45, 806–816 (1999).

    CAS  Article  Google Scholar 

  40. 40

    Miller, E.K. & Cohen, J.D. An integrative theory of prefrontal cortex function. Annu. Rev. Neurosci. 24, 167–202 (2001).

    CAS  Article  Google Scholar 

  41. 41

    Paxinos, G. & Watson, C. The Rat Brain in Stereotaxic Coordinates (Academic, San Diego, 1998).

    Google Scholar 

Download references


We would like to thank J. Rudy for many helpful comments and discussions. This work was supported by US National Institutes of Health grants DA13159 and MH50479.

Author information



Corresponding author

Correspondence to S F Maier.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Amat, J., Baratta, M., Paul, E. et al. Medial prefrontal cortex determines how stressor controllability affects behavior and dorsal raphe nucleus. Nat Neurosci 8, 365–371 (2005).

Download citation

Further reading


Quick links