Treatment of motoneuron degeneration by intracerebroventricular delivery of VEGF in a rat model of ALS

Abstract

Neurotrophin treatment has so far failed to prolong the survival of individuals affected with amyotrophic lateral sclerosis (ALS), an incurable motoneuron degenerative disorder. Here we show that intracerebroventricular (i.c.v.) delivery of recombinant vascular endothelial growth factor (Vegf) in a SOD1G93A rat model of ALS delays onset of paralysis by 17 d, improves motor performance and prolongs survival by 22 d, representing the largest effects in animal models of ALS achieved by protein delivery. By protecting cervical motoneurons, i.c.v. delivery of Vegf is particularly effective in rats with the most severe form of ALS with forelimb onset. Vegf has direct neuroprotective effects on motoneurons in vivo, because neuronal expression of a transgene expressing the Vegf receptor prolongs the survival of SOD1G93A mice. On i.c.v. delivery, Vegf is anterogradely transported and preserves neuromuscular junctions in SOD1G93A rats. Our findings in preclinical rodent models of ALS may have implications for treatment of neurodegenerative disease in general.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Distribution of i.c.v.-delivered 125I-VEGF.
Figure 2: Effects of Vegf delivery in rat models of ALS.
Figure 3: Effects of Vegf on motoneuron degeneration and axonal loss.
Figure 4: Overexpression of Flk1 in motoneurons improves the motor performance and increases the lifespan of SOD1G93A/HWr mice.
Figure 5: Axonal transport of Vegf and effects on neuromuscular junctions.

References

  1. 1

    Przedborski, S., Mitsumoto, H. & Rowland, L.P. Recent advances in amyotrophic lateral sclerosis research. Curr. Neurol. Neurosci. Rep. 3, 70–77 (2003).

    Article  Google Scholar 

  2. 2

    Brown, R.H. Jr. & Robberecht, W. Amyotrophic lateral sclerosis: pathogenesis. Semin. Neurol. 21, 131–139 (2001).

    Article  Google Scholar 

  3. 3

    Rothstein, J.D. Of mice and men: reconciling preclinical ALS mouse studies and human clinical trials. Ann. Neurol. 53, 423–426 (2003).

    Article  Google Scholar 

  4. 4

    Gurney, M.E. et al. Motor neuron degeneration in mice that express a human Cu,Zn superoxide dismutase mutation. Science 264, 1772–1775 (1994).

    CAS  Article  Google Scholar 

  5. 5

    Howland, D.S. et al. Focal loss of the glutamate transporter EAAT2 in a transgenic rat model of SOD1 mutant-mediated amyotrophic lateral sclerosis (ALS). Proc. Natl. Acad. Sci. USA 99, 1604–1609 (2002).

    CAS  Article  Google Scholar 

  6. 6

    Nagai, M. et al. Rats expressing human cytosolic copper-zinc superoxide dismutase transgenes with amyotrophic lateral sclerosis: associated mutations develop motor neuron disease. J. Neurosci. 21, 9246–9254 (2001).

    CAS  Article  Google Scholar 

  7. 7

    Ferrara, N., Gerber, H.P. & LeCouter, J. The biology of VEGF and its receptors. Nat. Med. 9, 669–676 (2003).

    CAS  Article  Google Scholar 

  8. 8

    Oosthuyse, B. et al. Deletion of the hypoxia-response element in the vascular endothelial growth factor promoter causes motor neuron degeneration. Nat. Genet. 28, 131–138 (2001).

    CAS  Article  Google Scholar 

  9. 9

    Lambrechts, D. et al. VEGF is a modifier of amyotrophic lateral sclerosis in mice and humans and protects motoneurons against ischemic death. Nat. Genet. 34, 383–394 (2003).

    CAS  Article  Google Scholar 

  10. 10

    Storkebaum, E. & Carmeliet, P. VEGF: a critical player in neurodegeneration. J. Clin. Invest. 113, 14–18 (2004).

    CAS  Article  Google Scholar 

  11. 11

    Azzouz, M. et al. VEGF delivery with retrogradely transported lentivector prolongs survival in a mouse ALS model. Nature 429, 413–417 (2004).

    CAS  Article  Google Scholar 

  12. 12

    Thoenen, H. & Sendtner, M. Neurotrophins: from enthusiastic expectations through sobering experiences to rational therapeutic approaches. Nat. Neurosci. 5 (Suppl.), 1046–1050 (2002).

    CAS  Article  Google Scholar 

  13. 13

    Kaspar, B.K., Llado, J., Sherkat, N., Rothstein, J.D. & Gage, F.H. Retrograde viral delivery of IGF-1 prolongs survival in a mouse ALS model. Science 301, 839–842 (2003).

    CAS  Article  Google Scholar 

  14. 14

    Azari, M.F. et al. Behavioural and anatomical effects of systemically administered leukemia inhibitory factor in the SOD1G93A G1H mouse model of familial amyotrophic lateral sclerosis. Brain Res. 982, 92–97 (2003).

    CAS  Article  Google Scholar 

  15. 15

    Feeney, S.J. et al. The effect of leukaemia inhibitory factor on SOD1G93A murine amyotrophic lateral sclerosis. Cytokine 23, 108–118 (2003).

    CAS  Article  Google Scholar 

  16. 16

    Ramer, M.S., Bradbury, E.J., Michael, G.J., Lever, I.J. & McMahon, S.B. Glial cell line–derived neurotrophic factor increases calcitonin gene–related peptide immunoreactivity in sensory and motoneurons in vivo. Eur. J. Neurosci. 18, 2713–2721 (2003).

    Article  Google Scholar 

  17. 17

    Raoul, C. & Aebischer, P. ALS, IGF-1 and gene therapy: 'it's never too late to mend'. Gene Ther. 11, 429–430 (2004).

    CAS  Article  Google Scholar 

  18. 18

    Windebank, A.J. Use of growth factors in the treatment of motor neuron diseases. Adv. Neurol. 68, 229–234 (1995).

    CAS  PubMed  Google Scholar 

  19. 19

    Thorne, R.G. & Frey, W.H. II Delivery of neurotrophic factors to the central nervous system: pharmacokinetic considerations. Clin. Pharmacokinet. 40, 907–946 (2001).

    CAS  Article  Google Scholar 

  20. 20

    Ouary, S. et al. Major strain differences in response to chronic systemic administration of the mitochondrial toxin 3-nitropropionic acid in rats: implications for neuroprotection studies. Neuroscience 97, 521–530 (2000).

    CAS  Article  Google Scholar 

  21. 21

    Lino, M.M., Schneider, C. & Caroni, P. Accumulation of SOD1 mutants in postnatal motoneurons does not cause motoneuron pathology or motoneuron disease. J. Neurosci. 22, 4825–4832 (2002).

    CAS  Article  Google Scholar 

  22. 22

    Schafers, M., Geis, C., Brors, D., Yaksh, T.L. & Sommer, C. Anterograde transport of tumor necrosis factor-alpha in the intact and injured rat sciatic nerve. J. Neurosci. 22, 536–545 (2002).

    Article  Google Scholar 

  23. 23

    Heerssen, H.M. & Segal, R.A. Location, location, location: a spatial view of neurotrophin signal transduction. Trends Neurosci. 25, 160–165 (2002).

    CAS  Article  Google Scholar 

  24. 24

    Russell, F.D., Koishi, K., Jiang, Y. & McLennan, I.S. Anterograde axonal transport of glial cell line–derived neurotrophic factor and its receptors in rat hypoglossal nerve. Neuroscience 97, 575–580 (2000).

    CAS  Article  Google Scholar 

  25. 25

    Watson, F.L. et al. Rapid nuclear responses to target-derived neurotrophins require retrograde transport of ligand-receptor complex. J. Neurosci. 19, 7889–7900 (1999).

    CAS  Article  Google Scholar 

  26. 26

    D'Ercole, A.J., Ye, P. & O'Kusky, J.R. Mutant mouse models of insulin-like growth factor actions in the central nervous system. Neuropeptides 36, 209–220 (2002).

    CAS  Article  Google Scholar 

  27. 27

    Ernfors, P., Lee, K.F. & Jaenisch, R. Mice lacking brain-derived neurotrophic factor develop with sensory deficits. Nature 368, 147–150 (1994).

    CAS  Article  Google Scholar 

  28. 28

    Airaksinen, M.S. & Saarma, M. The GDNF family: signalling, biological functions and therapeutic value. Nat. Rev. Neurosci. 3, 383–394 (2002).

    CAS  Article  Google Scholar 

  29. 29

    Giess, R. et al. Early onset of severe familial amyotrophic lateral sclerosis with a SOD-1 mutation: potential impact of CNTF as a candidate modifier gene. Am. J. Hum. Genet. 70, 1277–1286 (2002).

    CAS  Article  Google Scholar 

  30. 30

    Gao, W.Q. et al. IGF-I deficient mice show reduced peripheral nerve conduction velocities and decreased axonal diameters and respond to exogenous IGF-I treatment. J. Neurobiol. 39, 142–152 (1999).

    CAS  Article  Google Scholar 

  31. 31

    Orrell, R.W., King, A.W., Lane, R.J. & de Belleroche, J.S. Investigation of a null mutation of the CNTF gene in familial amyotrophic lateral sclerosis. J. Neurol. Sci. 132, 126–128 (1995).

    CAS  Article  Google Scholar 

  32. 32

    Luttun, A. et al. Revascularization of ischemic tissues by PlGF treatment, and inhibition of tumor angiogenesis, arthritis and atherosclerosis by anti-Flt1. Nat. Med. 8, 831–840 (2002).

    CAS  Article  Google Scholar 

  33. 33

    Caroni, P., Schneider, C., Kiefer, M.C. & Zapf, J. Role of muscle insulin-like growth factors in nerve sprouting: suppression of terminal sprouting in paralyzed muscle by IGF-binding protein 4. J. Cell. Biol. 125, 893–902 (1994).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank Y. Laroche for advice and A. Bouche, P. Chevron, S. Plaisance, E. Demarsin, D. Dejaegere, B. Hermans, S. Jansen, L. Kieckens, A. Manderveld, K. Maris, S. Meynen, M. Nijs, S. Terclavers, M. Vandewalle and B. Vanwetswinkel for their contribution. E.S. and D.L. are sponsored by the Fund for Scientific Research-Flanders (FWO). This work is supported, in part, by grants from the Muscular Dystrophy Association (3751), the FWO (G.0113.02), the European Union (QLK6-CT-2000-0053) and the Concerted Research Activities, Belgium (GOA2001/09), and by an unrestricted grant from Bristol-Myers-Squibb.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Peter Carmeliet.

Ethics declarations

Competing interests

P.C. and D.C. are named as inventors on a patent application regarding the use of VEGF to treat amyotrophic lateral sclerosis. The Flanders Interuniversity Institute for Biotechnology (VIB) is one of the joint owners of this patent application, and the said patent application has been licensed to an outside company. Neither VIB nor any of the authors have equity stakes in the company. However, VIB and some of the authors stand to eventually receive royalties.

Supplementary information

Supplementary Fig. 1

Effect of ICV delivery of Vegf on exploring activity, righting activity and grip strength in ALS rat models. (GIF 24 kb)

Supplementary Fig. 2

Effect of ICV delivery of Vegf on body weight loss, disease onset, motor performance and survival in SOD1G93A/HWr rats. (GIF 41 kb)

Supplementary Fig. 3

Axonal transport of VEGF. (JPG 57 kb)

Supplementary Table 1 (PDF 18 kb)

Supplementary Methods (PDF 84 kb)

Supplementary Note 1 (PDF 12 kb)

Supplementary Note 2 (PDF 12 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Storkebaum, E., Lambrechts, D., Dewerchin, M. et al. Treatment of motoneuron degeneration by intracerebroventricular delivery of VEGF in a rat model of ALS. Nat Neurosci 8, 85–92 (2005). https://doi.org/10.1038/nn1360

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing