Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Focal adhesion kinase in netrin-1 signaling


Netrins are a family of secreted molecules that are important for axonal outgrowth and guidance in the developing nervous system. However, the signaling mechanisms that lie immediately downstream of netrin receptors remain poorly understood. Here we report that the netrin receptor DCC (deleted in colorectal cancer) interacts with the focal adhesion kinase (FAK), a kinase implicated in regulating cell adhesion and migration. FAK was expressed in developing brains and was localized with DCC in cultured neurons. Netrin-1 induced FAK and DCC tyrosine phosphorylation. Disruption of FAK signaling abolished netrin-1-induced neurite outgrowth and attractive growth cone turning. Taken together, these results indicate a new signaling mechanism for DCC, in which FAK is activated upon netrin-1 stimulation and mediates netrin-1 function; they also identify a critical role for FAK in axon navigation.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: FAK interaction with DCC and neogenin.
Figure 2: DCC and FAK localization in rat cortical neurons.
Figure 3: Netrin-1 induction of tyrosine phosphorylation of FAK in neurons.
Figure 4: Regulation of FAK tyrosine phosphorylation by DCC.
Figure 5: FAK-dependent tyrosine phosphorylation of DCC in response to netrin-1.
Figure 6: Requirement of FAK tyrosine phosphorylation for netrin-1-induced neurite outgrowth and attractive turning.


  1. 1

    Livesey, F.J. Netrins and netrin receptors. Cell. Mol. Life Sci. 56, 62–68 (1999).

    CAS  Article  Google Scholar 

  2. 2

    Kennedy, T.E., Serafini, T., de la Torre, J.R. & Tessier-Lavigne, M. Netrins are diffusible chemotropic factors for commissural axons in the embryonic spinal cord. Cell 78, 425–435 (1994).

    CAS  Article  Google Scholar 

  3. 3

    Serafini, T. et al. The netrins define a family of axon outgrowth-promoting proteins homologous to C. elegans UNC-6. Cell 78, 409–424 (1994).

    CAS  Article  Google Scholar 

  4. 4

    Culotti, J.G. & Merz, D.C. DCC and netrins. Curr. Opin. Cell Biol. 10, 609–613 (1998).

    CAS  Article  Google Scholar 

  5. 5

    Keino-Masu, K. et al. Deleted in Colorectal Cancer (DCC) encodes a netrin receptor. Cell 87, 175–185 (1996).

    CAS  Article  Google Scholar 

  6. 6

    Chan, S.S. et al. UNC-40, a C. elegans homolog of DCC (Deleted in Colorectal Cancer), is required in motile cells responding to UNC-6 netrin cues. Cell 87, 187–195 (1996).

    CAS  Article  Google Scholar 

  7. 7

    Kolodziej, P.A. et al. frazzled encodes a Drosophila member of the DCC immunoglobulin subfamily and is required for CNS and motor axon guidance. Cell 87, 197–204 (1996).

    CAS  Article  Google Scholar 

  8. 8

    Hiramoto, M., Hiromi, Y., Giniger, E. & Hotta, Y. The Drosophila Netrin receptor Frazzled guides axons by controlling Netrin distribution. Nature 406, 886–889 (2000).

    CAS  Article  Google Scholar 

  9. 9

    Hedgecock, E.M., Culotti, J.G. & Hall, D.H. The unc-5, unc-6, and unc-40 genes guide circumferential migrations of pioneer axons and mesodermal cells on the epidermis in C. elegans. Neuron 4, 61–85 (1990).

    CAS  Article  Google Scholar 

  10. 10

    Ackerman, S.L. et al. The mouse rostral cerebellar malformation gene encodes an UNC-5-like protein. Nature 386, 838–842 (1997).

    CAS  Article  Google Scholar 

  11. 11

    Leonardo, E.D. et al. Vertebrate homologues of C. elegans UNC-5 are candidate netrin receptors. Nature 386, 833–838 (1997).

    CAS  Article  Google Scholar 

  12. 12

    Hong, K. et al. A ligand-gated association between cytoplasmic domains of UNC5 and DCC family receptors converts netrin-induced growth cone attraction to repulsion. Cell 97, 927–941 (1999).

    CAS  Article  Google Scholar 

  13. 13

    Keleman, K. & Dickson, B.J. Short- and long-range repulsion by the Drosophila Unc5 netrin receptor. Neuron 32, 605–617 (2001).

    CAS  Article  Google Scholar 

  14. 14

    Stein, E. & Tessier-Lavigne, M. Hierarchical organization of guidance receptors: silencing of netrin attraction by slit through a Robo/DCC receptor complex. Science 291, 1928–1938 (2001).

    CAS  Article  Google Scholar 

  15. 15

    Stein, E., Zou, Y., Poo, M. & Tessier-Lavigne, M. Binding of DCC by netrin-1 to mediate axon guidance independent of adenosine A2B receptor activation. Science 291, 1976–1982 (2001).

    CAS  Article  Google Scholar 

  16. 16

    Finger, J.H. et al. The netrin 1 receptors Unc5h3 and Dcc are necessary at multiple choice points for the guidance of corticospinal tract axons. J. Neurosci. 22, 10346–10356 (2002).

    CAS  Article  Google Scholar 

  17. 17

    Colavita, A. & Culotti, J.G. Suppressors of ectopic UNC-5 growth cone steering identify eight genes involved in axon guidance in Caenorhabditis elegans. Dev. Biol. 194, 72–85 (1998).

    CAS  Article  Google Scholar 

  18. 18

    Gitai, Z., Yu, T.W., Lundquist, E.A., Tessier-Lavigne, M. & Bargmann, C.I. The Netrin Receptor UNC-40/DCC Stimulates Axon Attraction and Outgrowth through Enabled and, in Parallel, Rac and UNC-115/AbLIM. Neuron 37, 53–65 (2003).

    CAS  Article  Google Scholar 

  19. 19

    Ming, G. et al. Phospholipase Cγ and phosphoinositide 3-kinase mediate cytoplasmic signaling in nerve growth cone guidance. Neuron 23, 139–148 (1999).

    CAS  Article  Google Scholar 

  20. 20

    Forcet, C. et al. Netrin-1-mediated axon outgrowth requires deleted in colorectal cancer-dependent MAPK activation. Nature 417, 443–447 (2002).

    CAS  Article  Google Scholar 

  21. 21

    Li, X., Saint-Cyr-Proulx, E., Aktories, K. & Lamarche-Vane, N. Rac1 and Cdc42 but not RhoA or Rho kinase activities are required for neurite outgrowth induced by the netrin-1 receptor DCC (Deleted in Colorectal Cancer) in N1E–115 neuroblastoma cells. J. Biol. Chem. 277, 15207–15214 (2002).

    CAS  Article  Google Scholar 

  22. 22

    Ming, G.L. et al. Adaptation in the chemotactic guidance of nerve growth cones. Nature 417, 411–418 (2002).

    CAS  Article  Google Scholar 

  23. 23

    Shekarabi, M. & Kennedy, T.E. The netrin-1 receptor DCC promotes filopodia formation and cell spreading by activating Cdc42 and Rac1. Mol. Cell. Neurosci. 19, 1–17 (2002).

    CAS  Article  Google Scholar 

  24. 24

    Campbell, D.S. & Holt, C.E. Apoptotic pathway and MAPKs differentially regulate chemotropic responses of retinal growth cones. Neuron 37, 939–952 (2003).

    CAS  Article  Google Scholar 

  25. 25

    Parsons, J.T., Martin, K.H., Slack, J.K., Taylor, J.M. & Weed, S.A. Focal adhesion kinase: a regulator of focal adhesion dynamics and cell movement. Oncogene 19, 5606–5613 (2000).

    CAS  Article  Google Scholar 

  26. 26

    Ilic, D. et al. Reduced cell motility and enhanced focal adhesion contact formation in cells from FAK-deficient mice. Nature 377, 539–544 (1995).

    CAS  Article  Google Scholar 

  27. 27

    Cary, L.A., Chang, J.F. & Guan, J.L. Stimulation of cell migration by overexpression of focal adhesion kinase and its association with Src and Fyn. J. Cell Sci. 109, 1787–1794 (1996).

    CAS  PubMed  Google Scholar 

  28. 28

    Richardson, A., Malik, R.K., Hildebrand, J.D. & Parsons, J.T. Inhibition of cell spreading by expression of the C-terminal domain of focal adhesion kinase (FAK) is rescued by coexpression of Src or catalytically inactive FAK: a role for paxillin tyrosine phosphorylation. Mol. Cell. Biol. 17, 6906–6914 (1997).

    CAS  Article  Google Scholar 

  29. 29

    Girault, J.A., Costa, A., Derkinderen, P., Studler, J.M. & Toutant, M. FAK and PYK2/CAKβ in the nervous system: a link between neuronal activity, plasticity and survival? Trends Neurosci. 22, 257–263 (1999).

    CAS  Article  Google Scholar 

  30. 30

    Brown, M.C., Curtis, M.S. & Turner, C.E. Paxillin LD motifs may define a new family of protein recognition domains. Nat. Struct. Biol. 5, 677–678 (1998).

    CAS  Article  Google Scholar 

  31. 31

    Bouchard, J-F. et al. Protein kinase A activation promotes plasma membrane insertion of DCC from an intracellular pool: a novel mechanism regulating commissural axon extension. J. Neurosci. 24, 3040–3050 (2004).

    CAS  Article  Google Scholar 

  32. 32

    Schaller, M.D. et al. Autophosphorylation of the focal adhesion kinase, pp125FAK, directs SH2-dependent binding of pp60src. Mol. Cell. Biol. 14, 1680–1688 (1994).

    CAS  Article  Google Scholar 

  33. 33

    Calalb, M.B., Polte, T.R. & Hanks, S.K. Tyrosine phosphorylation of focal adhesion kinase at sites in the catalytic domain regulates kinase activity: a role for Src family kinases. Mol. Cell. Biol. 15, 954–963 (1995).

    CAS  Article  Google Scholar 

  34. 34

    Guan, J.L. & Shalloway, D. Regulation of focal adhesion-associated protein tyrosine kinase by both cellular adhesion and oncogenic transformation. Nature 358, 690–692 (1992).

    CAS  Article  Google Scholar 

  35. 35

    Eliceiri, B.P. et al. Src-mediated coupling of focal adhesion kinase to integrin αvβ5 in vascular endothelial growth factor signaling. J. Cell Biol. 157, 149–160 (2002).

    CAS  Article  Google Scholar 

  36. 36

    Metin, C., Deleglise, D., Serafini, T., Kennedy, T.E. & Tessier-Lavigne, M. A role for netrin-1 in the guidance of cortical efferents. Development 124, 5063–5074 (1997).

    CAS  PubMed  Google Scholar 

  37. 37

    Zhang, X. et al. Focal adhesion kinase promotes phospholipase Cγ1 activity. Proc. Natl Acad. Sci. USA 96, 9021–9026 (1999).

    CAS  Article  Google Scholar 

  38. 38

    Chen, H.C. et al. Interaction of focal adhesion kinase with cytoskeletal protein talin. J. Biol. Chem. 270, 16995–16999 (1995).

    CAS  Article  Google Scholar 

  39. 39

    Ren, X.R. et al. Regulation of CDC42 GTPase by proline-rich tyrosine kinase 2 interacting with PSGAP, a novel pleckstrin homology and Src homology 3 domain containing rhoGAP protein. J. Cell Biol. 152, 971–984 (2001).

    CAS  Article  Google Scholar 

  40. 40

    Polte, T.R. & Hanks, S.K. Interaction between focal adhesion kinase and Crk-associated tyrosine kinase substrate p130Cas. Proc. Natl Acad. Sci. USA 92, 10678–10682 (1995).

    CAS  Article  Google Scholar 

  41. 41

    Beggs, H.E., Baragona, S.C., Hemperly, J.J. & Maness, P.F. NCAM140 interacts with the focal adhesion kinase p125fak and the SRC-related tyrosine kinase p59fyn. J. Biol. Chem. 272, 8310–8319 (1997).

    CAS  Article  Google Scholar 

  42. 42

    Hopker, V.H., Shewan, D., Tessier-Lavigne, M., Poo, M. & Holt, C. Growth-cone attraction to netrin-1 is converted to repulsion by laminin-1. Nature 401, 69–73 (1999).

    CAS  Article  Google Scholar 

  43. 43

    Pasterkamp, R.J., Peschon, J.J., Spriggs, M.K. & Kolodkin, A.L. Semaphorin 7A promotes axon outgrowth through integrins and MAPKs. Nature 424, 398–405 (2003).

    Article  Google Scholar 

  44. 44

    Yebra, M. et al. Recognition of the neural chemoattractant Netrin-1 by integrins α6β4 and α3β1 regulates epithelial cell adhesion and migration. Dev. Cell 5, 695–707 (2003).

    CAS  Article  Google Scholar 

  45. 45

    Liu, G. et al. Netrin requires the focal adhesion kinase and the Src family kinases to induce axon outgrowth and to attract axons. Nat. Neurosci. 7, 1222–1232 (2004).

    CAS  Article  Google Scholar 

  46. 46

    Li, W. et al. Activation of FAK and Src are receptor proximal events required for netrin signaling. Nat. Neurosci. 7, 1213–1221 (2004).

    CAS  Article  Google Scholar 

  47. 47

    Kornberg, L.J., Earp, H.S., Turner, C.E., Prockop, C. & Juliano, R.J. Signal transduction by integrins: increased protein tyrosine phosphorylation caused by clustering of β1 integrins. Proc. Natl Acad. Sci. USA 88, 8392–8396 (1991).

    CAS  Article  Google Scholar 

  48. 48

    Rodriguez-Fernandez, J.L. Why do so many stimuli induce tyrosine phosphorylation of FAK? Bioessays 21, 1069–1075 (1999).

    CAS  Article  Google Scholar 

  49. 49

    Fazeli, A. et al. Phenotype of mice lacking functional Deleted in colorectal cancer (Dcc) gene. Nature 386, 796–804 (1997).

    CAS  Article  Google Scholar 

  50. 50

    Huang, Y.Z. et al. Regulation of neuregulin signaling by PSD-95 interacting with ErbB4 at CNS synapses. Neuron 26, 443–455 (2000).

    CAS  Article  Google Scholar 

Download references


We are grateful to Y. Rao (Washington University), D. Ilic (University of California at San Francisco) and B. Vogelstein (Johns Hopkins Medical School) for reagents. We thank L. Xu (University of Alabama at Birmingham) for help on statistical analyses. G.L.M. is partially supported by Charles E. Culpeper Scholarships in Medical Science and the National Institutes of Health (NIH). This study is supported by grants from the NIH to Z.F.C., L.M., and W.C.X.

Author information



Corresponding author

Correspondence to Wen-cheng Xiong.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ren, Xr., Ming, Gl., Xie, Y. et al. Focal adhesion kinase in netrin-1 signaling. Nat Neurosci 7, 1204–1212 (2004).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing