Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The neurobiology of pair bonding

Abstract

A neurobiological model for pair-bond formation has emerged from studies in monogamous rodents. The neuropeptides oxytocin and vasopressin contribute to the processing of social cues necessary for individual recognition. Mesolimbic dopamine is involved in reinforcement and reward learning. Concurrent activation of neuropeptide and dopamine receptors in the reward centers of the brain during mating results in a conditioned partner preference, observed as a pair bond. Differential regulation of neuropeptide receptor expression may explain species differences in the ability to form pair bonds. These and other studies discussed here have intriguing implications for the neurobiology of social attachment in our own species.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: OTR and V1aR regulation of pair bonding in prairie voles.

Ivelisse Robles

Figure 2: Dopamine regulates pair bonding in female prairie voles.
Figure 3: Sagittal view of a prairie vole brain illustrating a proposed neural circuit model for pair bonding.
Figure 4: The molecular genetics of pair bonding.

Ivelisse Robles

Similar content being viewed by others

References

  1. Wolff, J.O., Mech, S.G., Dunlap, A.S. & Hodges, K.E. Multi-male mating by paired and unpaired female prairie voles (Microtus ochrogaster). Behaviour 139, 1147–1160 (2002).

    Article  Google Scholar 

  2. Kleiman, D. Monogamy in mammals. Q. Rev. Biol. 52, 39–69 (1977).

    Article  CAS  PubMed  Google Scholar 

  3. Insel, T.R. & Young, L.J. The neurobiology of attachment. Nat. Rev. Neurosci. 2, 129–136 (2001).

    Article  CAS  PubMed  Google Scholar 

  4. Carter, C.S., DeVries, A.C. & Getz, L.L. Physiological substrates of mammalian monogamy: the prairie vole model. Neurosci. Biobehav. Rev. 19, 303–314 (1995).

    Article  CAS  PubMed  Google Scholar 

  5. Insel, T.R., Preston, S. & Winslow, J.T. Mating in the monogamous male: behavioral consequences. Physiol. Behav. 57, 615–627 (1995).

    Article  CAS  PubMed  Google Scholar 

  6. Lim, M.M. et al. Enhanced partner preference in promiscuous species by manipulating the expression of a single gene. Nature 429, 754–757 (2004).

    Article  CAS  PubMed  Google Scholar 

  7. Wang, Z.X. & Insel, T.R. Parental behavior in voles. Adv. Study Behav. 25, 361–384 (1996).

    Article  Google Scholar 

  8. Getz, L.L. & Carter, C.S. Prairie-vole partnerships. Am. Sci. 84, 56–62 (1996).

    Google Scholar 

  9. Williams, J., Catania, K. & Carter, C. Development of partner preferences in female prairie voles (Microtus ochrogaster): the role of social and sexual experience. Horm. Behav. 26, 339–349 (1992).

    Article  CAS  PubMed  Google Scholar 

  10. Kendrick, K.M. et al. Neural control of maternal behavior and olfactory recognition of offspring. Brain Res. Bull. 44, 383–395 (1997).

    Article  CAS  PubMed  Google Scholar 

  11. Goodson, J.L. & Bass, A.H. Social behavior functions and related anatomical characteristics of vasotocin/vasopressin systems in vertebrates. Brain Res. Rev. 35, 246–265 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Ferris, C.F., Albers, H.E., Wesolowski, S.M., Goldman, B.D. & Luman, S.E. Vasopressin injected into the hypothalamus triggers a stereotypic behavior in golden hamsters. Science 224, 521–523 (1984).

    Article  CAS  PubMed  Google Scholar 

  13. Williams, J.R., Insel, T.R., Harbaugh, C.R. & Carter, C.S. Oxytocin administered centrally facilitates formation of a partner preference in prairie voles (Microtus ochrogaster). J. Neuroendocrinol. 6, 247–250 (1994).

    Article  CAS  PubMed  Google Scholar 

  14. Winslow, J., Hastings, N., Carter, C.S. & Harbaugh, C. & Insel, T.R. A role for central vasopressin in pair bonding in monogamous prairie voles. Nature 365, 545–548 (1993).

    Article  CAS  PubMed  Google Scholar 

  15. Insel, T.R. & Hulihan, T. A gender-specific mechanism for pair bonding: Oxytocin and partner preference formation in monogamous voles. Behav. Neurosci. 109, 782–789 (1995).

    Article  CAS  PubMed  Google Scholar 

  16. Cho, M.M., DeVries, A.C., Williams, J.R. & Carter, C.S. The effects of oxytocin and vasopressin on partner preferences in male and female prairie voles (Microtus ochrogaster). Behav. Neurosci. 113, 1071–1079 (1999).

    Article  CAS  PubMed  Google Scholar 

  17. Cushing, B. & Carter, C.S. Peripheral pulses of oxytocin increase partner preferences in female, but not male, prairie voles. Horm. Behav. 37, 49–56 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. Bales, K. & Carter, C.S. Developmental exposure to oxytocin facilitates partner preferences in male prairie voles (Microtus ochrogaster). Behav. Neurosci. 117, 854–859 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. DeVries, A.C., DeVries, M.B., Taymans, S.E. & Carter, C.S. Stress has sexually dimorphic effects on pair bonding in prairie voles. Proc. Natl. Acad. Sci. USA 93, 11980–11984 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. DeVries, C.A., DeVries, M.B., Taymans, S. & Carter, C.S. Modulation of pair bonding in female prairie voles (Microtus ochrogaster) by corticosterone. Proc. Natl. Acad. Sci. USA 92, 7744–7748 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Devries, A.C., Guptaa, T., Cardillo, S., Cho, M. & Carter, C.S. Corticotropin-releasing factor induces social preferences in male prairie voles. Psychoneuroendocrinology 27, 705–714 (2002).

    Article  CAS  PubMed  Google Scholar 

  22. Insel, T.R. & Shapiro, L.E. Oxytocin receptor distribution reflects social organization in monogamous and polygamous voles. Proc. Natl. Acad. Sci. USA 89, 5981–5985 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Insel, T.R., Wang, Z. & Ferris, C.F. Patterns of brain vasopressin receptor distribution associated with social organization in microtine rodents. J. Neurosci. 14, 5381–5392 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Young, L.J., Lim, M., Gingrich, B. & Insel, T.R. Cellular mechanisms of social attachment. Horm. Behav. 40, 133–148 (2001).

    Article  CAS  PubMed  Google Scholar 

  25. Lim, M.M. & Young, L.J. Vasopressin-dependent neural circuits underlying pair bond formation in the monogamous prairie vole. Neuroscience 125, 35–45 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. Liu, Y., Curtis, J.T. & Wang, Z.X. Vasopressin in the lateral septum regulates pair bond formation in male prairie voles (Microtus ochrogaster). Behav. Neurosci. 115, 910–919 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. Wise, R.A. Brain reward circuitry: insights from unsensed incentives. Neuron 36, 229–240 (2002).

    Article  CAS  PubMed  Google Scholar 

  28. Heimer, L., Zahm, D.S., Churchill, L., Kalivas, P.W. & Wohltmann, C. Specificity in the projection patterns of accumbal core and shell in the rat. Neuroscience 41, 89–125 (1991).

    Article  CAS  PubMed  Google Scholar 

  29. Klitenick, M., Deutch, A., Churchill, L. & Kalivas, P.W. Topography and functional role of dopaminergic projection from the ventral messencephallic tegmentum to the ventral pallidum. Neuroscience 50, 371–386 (1992).

    Article  CAS  PubMed  Google Scholar 

  30. Koob, G.F. & Swerdlow, N.R. The functional output of the mesolimbic dopamine system. Ann. N.Y. Acad. Sci. 537, 216–227 (1988).

    Article  CAS  PubMed  Google Scholar 

  31. Kalivas, P.W., Churchill, L. & Klitenick, M.A. The circuitry mediating the translation of motivational stimuli into adaptive motor responses. in Limbic Motor Circuits and Neuropsychiatry (eds. Kalivas, P.W. & Barnes, C.D.) 237–288 (CRC Press, Boca Raton, Florida, USA, 1993).

    Google Scholar 

  32. Di Chiara, G. Nucleus accumbens shell and core dopamine: differential role in behavior and addiction. Behav. Brain Res. 137, 75–114 (2002).

    Article  CAS  PubMed  Google Scholar 

  33. Koob, G.F. & Nestler, E.J. The neurobiology of drug addiction. J. Neuropsychiatry Clin. Neurosci. 9, 482–497 (1997).

    Article  CAS  PubMed  Google Scholar 

  34. Kelley, A.E. & Berridge, K.C. The neuroscience of natural rewards: relevance to addictive drugs. J. Neurosci. 22, 3306–3311 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Becker, J.B., Rudick, C.N. & Jenkins, W.J. The role of dopamine in the nucleus accumbens and striatum during sexual behavior in the female rat. J. Neurosci. 21, 3236–3241 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Pfaus, J.G. et al. Sexual behavior enhances central dopamine transmission in the male rat. Brain Res. 530, 345–348 (1990).

    Article  CAS  PubMed  Google Scholar 

  37. Insel, T.R. Is social attachment an addictive disorder. Physiol. Behav. 79, 351–357 (2003).

    Article  CAS  PubMed  Google Scholar 

  38. Paredes, R. & Alonso, A. Sexual behavior regulated (paced) by the female induces conditioned place preference. Behav. Neurosci. 111, 123–128 (1997).

    Article  CAS  PubMed  Google Scholar 

  39. Everitt, B.J. Sexual motivation: a neural and behavioral analysis of the mechanisms underlying appetitive and copulatory responses of male rats. Neurosci. Biobehav. Rev. 14, 217–232 (1990).

    Article  CAS  PubMed  Google Scholar 

  40. Pfaus, J. & Phillips, A. Role of dopamine in anticipitory and consummatory measures of sexual behavior in the male rat. Behav. Neurosci. 105, 727–743 (1991).

    Article  CAS  PubMed  Google Scholar 

  41. Aragona, B.J., Liu, Y., Cameron, A., Perlman, G. & Wang, Z.X. Opposite modulation of social attachment by D1- and D2-type dopamine receptor activation in nucleus accumbens shell. Horm. Behav. 44, 37 (2003).

    Google Scholar 

  42. Aragona, B.J., Liu, Y., Curtis, T.J., Stephan, F.K. & Wang, Z.X. A critical role for nucleus accumbens dopamine in partner preference formation of male prairie voles. J. Neurosci. 23, 3483–3490 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Gingrich, B., Liu, Y., Cascio, C., Wang, Z. & Insel, T.R. Dopamine D2 receptors in the nucleus accumbens are important for social attachment in female prairie voles (Microtus ochrogaster). Behav. Neurosci. 114, 173–183 (2000).

    Article  CAS  PubMed  Google Scholar 

  44. Liu, Y. & Wang, Z.X. Nucleus accumbens dopamine and oxytocin interact to regulate pair bond formation in female prairie voles. Neuroscience 121, 537–544 (2003).

    Article  CAS  PubMed  Google Scholar 

  45. Pitkow, L.J. et al. Facilitation of affiliation and pair-bond formation by vasopressin receptor gene transfer into the ventral forebrain of a monogamous vole. J. Neurosci. 21, 7392–7396 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kovacs, G.L., Sarnyai, Z. & Szabo, G. Oxytocin and addiction: a review. Psychoneuroendocrinology 23, 945–962 (1998).

    Article  CAS  PubMed  Google Scholar 

  47. Pfister, H.P. & Muir, J.L. Influence of exogenously administered oxytocin on central noradrenaline, dopamine and serotonin levels following psychological stress in nulliparous female rats (Rattus norvegicus). Int. J. Neurosci. 45, 221–229 (1989).

    Article  CAS  PubMed  Google Scholar 

  48. Melis, M.R., Argiolas, A. & Gessa, G.L. Apomorphine increases plasma oxytocin concentration in male rats. Neurosci. Lett. 98, 351–355 (1989).

    Article  CAS  PubMed  Google Scholar 

  49. Ferguson, J.N., Young, L.J. & Insel, T.R. The neuroendocrine basis of social recognition. Front. Neuroendocrinol. 23, 200–224 (2002).

    Article  CAS  PubMed  Google Scholar 

  50. Ferguson, J.N., Young, L.J., Hearn, E.F., Insel, T.R. & Winslow, J.T. Social amnesia in mice lacking the oxytocin gene. Nat. Genet. 25, 284–288 (2000).

    Article  CAS  PubMed  Google Scholar 

  51. Ferguson, J.N., Aldag, J.M., Insel, T.R. & Young, L.J. Oxytocin in the medial amygdala is essential for social recognition in the mouse. J. Neurosci. 21, 8278–8285 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Everts, H.G.J. & Koolhaas, J.M. Differential modulation of lateral septal vasopressin receptor blockade in spatial-learning, social recognition, and anxiety-related behaviors in rats. Behav. Brain Res. 99, 7–16 (1999).

    Article  CAS  PubMed  Google Scholar 

  53. Landgraf, R. et al. V1 vasopressin receptor antisense oligodeoxynucleotide into septum reduces vasopressin binding, social discrimination abilities and anxiety-related behavior in rats. J. Neurosci. 15, 4250–4258 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Landgraf, R. et al. Viral vector mediated gene transfer of the vole V1a vasopressin receptor in the rat septum: improved social discrimination and affiliative behavior. Eur. J. Neurosci. 18, 403–411 (2003).

    Article  PubMed  Google Scholar 

  55. Bielsky, I.F., Hu, S-B., Szegda, K.L., Westphal, H. & Young, L.J. Profound impairment in social recognition and reduction in anxiety in vasopressin V1a receptor knockout mice. Neuropsychopharmacology 29, 483–493 (2004).

    Article  CAS  PubMed  Google Scholar 

  56. Pfaus, J.G. & Heeb, M.M. Implications of immediate-early gene induction in the brain following sexual stimulation of female and male rodents. Brain Res. Bull. 44, 397–407 (1997).

    Article  CAS  PubMed  Google Scholar 

  57. De Vries, G. & Buijs, R. The origin of vasopressinergic and oxytocinergic innervation of the rat brain with special reference to the lateral septum. Brain Res. 273, 307–317 (1983).

    Article  CAS  PubMed  Google Scholar 

  58. Wang, Z.X., Zhou, L., Hulihan, T.J. & Insel, T.R. Immunoreactivity of central vasopressin and oxytocin pathways in microtine rodents: a quantitative comparative study. J. Comp. Neurol. 366, 726–737 (1996).

    Article  CAS  PubMed  Google Scholar 

  59. Kendrick, K.M., Keverne, E.B., Baldwin, B.A. & Sharman, D.F. Cerebrospinal fluid levels of acetylcholinesterase, monoamines and oxytocin during labor, parturition, vaginocervical stimulation, lamb separation and suckling in sheep. Neuroendocrinology 44, 149–156 (1986).

    Article  CAS  PubMed  Google Scholar 

  60. Pfaus, J., Kippin, T. & Centeno, S. Conditioning and sexual behavior: a review. Horm. Behav. 40, 291–321 (2001).

    Article  CAS  PubMed  Google Scholar 

  61. Young, L.J., Nilsen, R., Waymire, K.G., MacGregor, G.R. & Insel, T.R. Increased affiliative response to vasopressin in mice expressing the vasopressin receptor from a monogamous vole. Nature 400, 766–768 (1999).

    Article  CAS  PubMed  Google Scholar 

  62. Li, Y.C., Korol, A.B., Fahima, T. & Nevo, E. Microsatellites within genes: structure, function, and evolution. Mol. Biol. Evol. 21, 991–1007 (2004).

    Article  CAS  PubMed  Google Scholar 

  63. Lesch, K.P. et al. Association of anxiety-related traits with a polymorphism in the serotonin transporter gene regulatory region. Science 274, 1527–1531 (1996).

    Article  CAS  PubMed  Google Scholar 

  64. Michelhaugh, S.K., Fiskerstrand, C., Lovejoy, E., Bannon, M.J. & Quinn, J.P. The dopamine transporter gene (SLC6A3) variable number of tandem repeats domain enhances transcription in dopamine neurons. J. Neurochem. 79, 1033–1038 (2001).

    Article  CAS  PubMed  Google Scholar 

  65. Hammock, E.A.D. & Young, L.J. Functional microsatellite polymorphisms associated with divergent social structure in vole species. Mol. Biol. Evol. 21, 1057–1063 (2004).

    Article  CAS  PubMed  Google Scholar 

  66. Wassink, T.H. et al. Examination of AVPR1a as an autism susceptibility gene. Mol. Psychiatry published online (2004).

  67. Kim, S. et al. Transmission disequilibrium testing of arginine vasopressin receptor 1A (AVPR1A) polymorphisms in autism. Mol. Psychiatry 7, 503–507 (2002).

    Article  CAS  PubMed  Google Scholar 

  68. Carmichael, M.S. et al. Plasma oxytocin increases in the human sexual response. J. Clin. Endocrinol. Metab. 64, 27–31 (1987).

    Article  CAS  PubMed  Google Scholar 

  69. Murphy, M.R., Seckl, J.R., Burton, S., Checkley, S.A. & Lightman, S.L. Changes in oxytocin and vasopressin secretion during sexual activity in men. J. Clin. Endocrinol. Metab. 65, 738–741 (1987).

    Article  CAS  PubMed  Google Scholar 

  70. Christensson, K., Nilsonn, B.A., Stock, S., Matthiesen, A.S. & Unvas-Moberg, K. Effect of nipple stimulation on uterine activity and on plasma levels of oxytocin in full term, healthy, pregnant women. Acta Obstet. Gynaecol. Scand. 68, 205–210 (1989).

    Article  CAS  Google Scholar 

  71. Bartels, A. & Zeki, S. The neural basis for romantic love. Neuroreport 11, 3829–3834 (2000).

    Article  CAS  PubMed  Google Scholar 

  72. Loup, F., Tribollet, E., Dubois-Dauphin, M. & Dreifuss, J.J. Localization of high-affinity binding sites for oxytocin and vasopressin in the human brain. An autoradiographic study. Brain Res. 555, 220–232 (1991).

    Article  CAS  PubMed  Google Scholar 

  73. Jenkins, J.S., Ang, V., Hawthorn, J., Rossor, M.N. & Iversen, L.L. Vasopressin, oxytocin and neurophysins in the human brain and spinal cord. Brain Res. 291, 111–117 (1984).

    Article  CAS  PubMed  Google Scholar 

  74. Bartels, A. & Zeki, S. The neural correlates of maternal and romantic love. Neuroimage 21, 1155–1166 (2004).

    Article  PubMed  Google Scholar 

  75. Holstege, G. et al. Brain activation during human male ejaculation. J. Neurosci. 23, 9185–9193 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Wang, Z.X. et al. Dopamine D2 receptor-mediated regulation of partner preferences in female prairie voles: a mechanism for pair bonding. Behav. Neurosci. 113, 602–611 (1999).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge A.Z. Murphy, E.A.D. Hammock, M.M. Lim, B. Aragona and T. Curtis for discussion and comments during the writing of this manuscript. The authors especially thank C.S. Carter and T.R. Insel for their pioneering work, which laid the foundation for neurobiological studies of social bonding. Much of this work was supported by National Institute of Mental Health grants to L.J.Y. and Z.X.W.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Larry J Young.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Young, L., Wang, Z. The neurobiology of pair bonding. Nat Neurosci 7, 1048–1054 (2004). https://doi.org/10.1038/nn1327

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1327

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing