Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Acceleration of visually cued conditioned fear through the auditory pathway

Abstract

Defensive responses elicited by sensory experiences are critical for survival. Mice acquire a conditioned fear response rapidly to an auditory cue but slowly to a visual cue, a difference in learned behavior that is likely to be mediated by direct projections to the lateral amygdala from the auditory thalamus but mainly indirect ones from the visual thalamus. Here, we show that acquisition of visually cued conditioned fear is accelerated in 'rewired' mice that have retinal projections routed to the auditory thalamus. Visual stimuli induce expression of the immediate early gene Fos (also known as c-fos) in the auditory thalamus and the lateral amygdala in rewired mice, similar to the way auditory stimuli do in control mice. Thus, the rewired auditory pathway conveys visual information and mediates rapid activity-dependent plasticity in central structures that influence learned behavior.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Simplified fear conditioning pathways in normal and rewired mice.
Figure 2: Cued testing behavior in normal and rewired mice.
Figure 3: Cued freezing across sessions.
Figure 4: c-fos expression after one session of fear conditioning (ae).

Similar content being viewed by others

References

  1. Wiesel, T.N. & Hubel, D.H. Single-cell responses in striate cortex of kittens deprived of vision in one eye. J. Neurophysiol. 26, 1003–1017 (1963).

    Article  CAS  Google Scholar 

  2. Hubel, D.H. & Wiesel, T.N. & LeVay, S. Plasticity of ocular dominance columns in monkey striate cortex. Phil. Trans. R. Soc. Lond. B 278, 377–409 (1977).

    Article  CAS  Google Scholar 

  3. Merzenich, M.M. et al. Somatosensory cortical map changes following digit amputation in adult monkeys. J. Comp. Neurol. 224, 591–605 (1984).

    Article  CAS  Google Scholar 

  4. Kaas, J.H. et al. Reorganization of retinotopic cortical maps in adult mammals after lesions of the retina. Science 248, 229–231 (1990).

    Article  CAS  Google Scholar 

  5. Mitchell, D.E. The extent of visual recovery from early monocular or binocular visual deprivation in kittens. J. Physiol. (Lond.) 395, 639–660 (1988).

    Article  CAS  Google Scholar 

  6. Mitchell, D.E. The long-term effectiveness of different regimens of occlusion on recovery from early monocular deprivation in kittens. Phil. Trans. R. Soc. Lond. B 333, 51–79 (1991).

    Article  CAS  Google Scholar 

  7. Ramachandran, V.S., Stewart, M. & Rogers-Ramachandran, D.C. Perceptual correlates of massive cortical reorganization. Neuroreport 3, 583–586 (1992).

    Article  CAS  Google Scholar 

  8. Dietrich, V., Nieschalk, M., Stoll, W., Rajan, R. & Pantev, C. Cortical reorganization in patients with high frequency cochlear hearing loss. Hear. Res. 158, 95–101 (2001).

    Article  CAS  Google Scholar 

  9. von Melchner, L., Pallas, S.L. & Sur, M. Visual behaviour mediated by retinal projections directed to the auditory pathway. Nature 404, 871–876 (2000).

    Article  CAS  Google Scholar 

  10. Fendt, M. & Fanselow, M.S. The neuroanatomical and neurochemical basis of conditioned fear. Neurosci. Biobehav. Rev. 23, 743–760 (1999).

    Article  CAS  Google Scholar 

  11. LeDoux, J.E. Emotion circuits in the brain. Annu. Rev. Neurosci. 23, 155–184 (2000).

    Article  CAS  Google Scholar 

  12. Heldt, S., Sundin, V., Willott, J.F. & Falls, W.A. Posttraining lesions of the amygdala interfere with fear-potentiated startle to both visual and auditory conditioned stimuli in C57BL/6J mice. Behav. Neurosci. 114, 749–759 (2000).

    Article  CAS  Google Scholar 

  13. Rogan, M.T. & LeDoux, J.E. LTP is accompanied by commensurate enhancement of auditory-evoked responses in a fear conditioning circuit. Neuron 15, 127–136 (1995).

    Article  CAS  Google Scholar 

  14. Doron, N.N. & LeDoux, J.E. Organization of projections to the lateral amygdala from auditory and visual areas of the thalamus in the rat. J. Comp. Neurol. 412, 383–409 (1999).

    Article  CAS  Google Scholar 

  15. Namura, S., Takada, M., Kikuchi, H. & Mizuno, N. Collateral projections of single neurons in the posterior thalamic region to both the temporal cortex and the amygdala: a fluorescent retrograde double-labeling study in the rat. J. Comp. Neurol. 384, 59–70 (1997).

    Article  CAS  Google Scholar 

  16. LeDoux, J.E., Sakaguchi, A. & Reis, D.J. Subcortical efferent projections of the medial geniculate nucleus mediate emotional responses conditioned to acoustic stimuli. J. Neurosci. 4, 683–698 (1984).

    Article  CAS  Google Scholar 

  17. Quirk, G.J., Repa, C. & LeDoux, J.E. Fear conditioning enhances short-latency auditory responses of lateral amygdala neurons: parallel recordings in the freely behaving rat. Neuron 15, 1029–1039 (1995).

    Article  CAS  Google Scholar 

  18. Quirk, G.J., Armony, J.L. & LeDoux, J.E. Fear conditioning enhances different temporal components of tone-evoked spike trains in auditory cortex and lateral amygdala. Neuron 19, 613–624 (1997).

    Article  CAS  Google Scholar 

  19. Shi, C. & Davis, M. Visual pathways involved in fear conditioning measured with fear-potentiated startle: behavioral and anatomic studies. J. Neurosci. 21, 9844–9855 (2001).

    Article  CAS  Google Scholar 

  20. Lyckman, A.W. et al. Enhanced plasticity of retinothalamic projections in an ephrin-A2/A5 double mutant. J. Neurosci. 21, 7684–7690 (2001).

    Article  CAS  Google Scholar 

  21. Sur, M., Garraghty, P.E. & Roe, A.W. Experimentally induced visual projections into auditory thalamus and cortex. Science 242, 1437–1441 (1988).

    Article  CAS  Google Scholar 

  22. Roe, A.W., Pallas, S.L., Hahm, J.O. & Sur, M. A map of visual space induced in primary auditory cortex. Science 250, 818–820 (1990).

    Article  CAS  Google Scholar 

  23. Roe, A.W., Pallas, S.L., Kwon, Y.H. & Sur, M. Visual projections routed to the auditory pathway in ferrets: receptive fields of visual neurons in primary auditory cortex. J. Neurosci. 12, 3651–3664 (1992).

    Article  CAS  Google Scholar 

  24. Roe, A.W., Garraghty, P.E., Esguerra, M. & Sur, M. Experimentally induced visual projections to the auditory thalamus in ferrets: evidence for a W cell pathway. J. Comp. Neurol. 334, 263–280 (1993).

    Article  CAS  Google Scholar 

  25. Sharma, J., Angelucci, A. & Sur, M. Induction of visual orientation modules in auditory cortex. Nature 404, 841–847 (2000).

    Article  CAS  Google Scholar 

  26. Schneider, G.E. Early lesions of superior colliculus: factors affecting the formation of abnormal retinal projections. Brain Behav. Evol. 8, 73–109 (1973).

    Article  CAS  Google Scholar 

  27. Kalil, R.E. & Schneider, G.E. Abnormal synaptic connections of the optic tract in the thalamus after midbrain lesions in newborn hamsters. Brain Res. 100, 690–698 (1975).

    Article  CAS  Google Scholar 

  28. Frost, D.O. Anomalous visual connections to somatosensory and auditory systems following brain lesions in early life. Brain Res. 255, 627–635 (1982).

    Article  CAS  Google Scholar 

  29. Frost, D.O. & Metin, C. Induction of functional retinal projections to the somatosensory system. Nature 317, 162–164 (1985).

    Article  CAS  Google Scholar 

  30. Kim, S.D., Rivers, S., Bevins, R.A. & Ayres, J.J.B. Conditioned stimulus determinants of conditioned response form in pavlovian fear conditioning. J. Exp. Psychol. Anim. Behav. Process. 22, 87–104 (1996).

    Article  CAS  Google Scholar 

  31. Angelucci, A., Clasca, F. & Sur, M. Brainstem inputs to the ferret medial geniculate nucleus and the effect of early deafferentation on novel retinal projections to the auditory thalamus. J. Comp. Neurol. 400, 417–439 (1998).

    Article  CAS  Google Scholar 

  32. Fanselow, M.S. & LeDoux, J.E. Why we think plasticity underlying Pavlovian fear conditioning occurs in the basolateral amygdala. Neuron 23, 229–232 (1999).

    Article  CAS  Google Scholar 

  33. Rogan, M.T., Staubli, U.V. & LeDoux, J.E. Fear conditioning induces associative long-term potentiation in the amygdala. Nature 390, 604–607 (1997).

    Article  CAS  Google Scholar 

  34. Tang, Y.P. et al. Genetic enhancement of learning and memory in mice. Nature 401, 63–69 (1999).

    Article  CAS  Google Scholar 

  35. Katz, L.C. & Shatz, C.J. Synaptic activity and the construction of cortical circuits. Science 274, 1133–1138 (1996).

    Article  CAS  Google Scholar 

  36. Newton, J.R. & Sur, M. Plasticity of cerebral cortex in development. in Encyclopedia of Neuroscience edn. 3 (eds. Adelman, G. & Smith, B.H.) (Elsevier, New York, 2004).

    Google Scholar 

  37. Damasio, A.R. et al. Subcortical and cortical brain activity during the feeling of self-generated emotions. Nat. Neurosci. 3, 1049–1056 (2000).

    Article  CAS  Google Scholar 

  38. Buchel, C., Morris, J., Dolan, R.J. & Friston, K.J. Brain systems mediating aversive conditioning: an event-related fMRI study. Neuron 20, 947–957 (1998).

    Article  CAS  Google Scholar 

  39. LaBar, K.S., Gatenby, J.C., Gore, J.C., LeDoux, J.E. & Phelps, E.A. Human amygdala activation during conditioned fear acquisition and extinction: a mixed-trial fMRI study. Neuron 20, 937–945 (1998).

    Article  CAS  Google Scholar 

  40. Adolphs, R., Tranel, D., Damasio, H. & Damasio, A. Impaired recognition of emotion in facial expressions following bilateral damage to the human amygdala. Nature 372, 669–672 (1994).

    Article  CAS  Google Scholar 

  41. Bechara, A. et al. Double dissociation of conditioning and declarative knowledge relative to the amygdala and hippocampus in humans. Science 269, 1115–1118 (1995).

    Article  CAS  Google Scholar 

  42. Miyakawa, T., Yamada, M., Duttaroy, A. & Wess, J. Hyperactivity and intact hippocampus-dependent learning in mice lacking the M1 muscarinic acetylcholine receptor. J. Neurosci. 21, 5239–5250 (2001).

    Article  CAS  Google Scholar 

  43. Williams, R.W. & Rakic, P. Three-dimensional counting: an accurate and direct method to estimate numbers of cells in sectioned material. J. Comp. Neurol. 278, 344–352 (1988).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Majewska and A. Lyckman for their assistance with the c-fos experiments. This work was supported by grants from the US National Institutes of Health (F32 EY13900 to J.R.N., R01 NS32925 and P50 MH58880 to S.T., and R01 EY14134 and R01 EY15068 to M.S.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mriganka Sur.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Lesion site. Coronal sections are shown at the same level of the inferior colliculus for (a) a sham lesion and (b) a rewired mouse. Dark label in dorsal part of A shows retinal projections to the far posterior superior colliculus following bilateral intraocular injection of cholera toxin subunit B. Scale bar, 1 mm. D, dorsal, M, medial, IC = inferior colliculus. (JPG 18 kb)

Supplementary Fig. 2

Retinothalamic projections. Coronal sections are shown at the same level of the thalamus for (a) a sham lesion, (b) a rewired and (c) a SC lesion mouse. Retinal projections were labeled by intraocular injection of cholera toxin subunit B. Scale bar, 0.1 mm. D, dorsal, M, medial, LP = lateral posterior nucleus, MGN = medial geniculate nucleus. (JPG 42 kb)

Supplementary Table 1

Summary of the number of mice in each group. (PDF 9 kb)

Supplementary Note (PDF 19 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Newton, J., Ellsworth, C., Miyakawa, T. et al. Acceleration of visually cued conditioned fear through the auditory pathway. Nat Neurosci 7, 968–973 (2004). https://doi.org/10.1038/nn1306

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1306

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing