Ethanol opens G-protein-activated inwardly rectifying K+ channels


Ethanol affects many functions of the brain and peripheral organs. Here we show that ethanol opens G-protein-activated, inwardly rectifying K+ (GIRK) channels, which has important implications for inhibitory regulation of neuronal excitability and heart rate. At pharmacologically relevant concentrations, ethanol activated both brain-type GIRK1/2 and cardiac-type GIRK1/4 channels without interaction with G proteins or second messengers. Moreover, weaver mutant mice, which have a missense mutation in the GIRK2 channel, showed a loss of ethanol-induced analgesia. These results suggest that the GIRK channels in the brain and heart are important target sites for ethanol.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Effects of ethanol on GIRK and IRK channels.
Figure 2: Effects of a homologous series of n-alcohols on GIRK channels.
Figure 3: Effects of pertussis toxin (PTX) and antisense oligodeoxynucleotide (anti-Gβ1) against mRNA encoding the Xenopus oocyte Gβ1 subunit on ethanol-induced GIRK currents in oocytes co-expressing μ-opioid receptors and GIRK1 and GIRK2 subunits.
Figure 4: Activation of brain-type GIRK1/2 channels by ethanol in excised outside-out patches.
Figure 5: Ethanol-insensitive weaver GIRK2 channels.
Figure 6: Involvement of GIRK channels in ethanol-induced in-vivo effects.


  1. 1

    Hobbs, W. R., Rall, T. W. & Verdoorn, T. A. in Goodman & Gilman's The Pharmacological Basis of Therapeutics 9th edn. (eds. Hardman, J. G., Limbird, L. E., Molinoff, P. B., Ruddon, R. W. & Gilman, A. F.) 361–396 (McGraw-Hill, New York, 1996).

    Google Scholar 

  2. 2

    Peoples, R. W., Li, C. & Weight, F. F. Lipid vs. protein theories of alcohol action in the nervous system. Annu. Rev. Pharmacol. Toxicol. 36, 185–201 (1996).

    CAS  Article  Google Scholar 

  3. 3

    Covernton, P. J. O. & Connolly, J. G. Differential modulation of rat neuronal nicotinic receptor subtypes by acute application of ethanol. Br. J. Pharmacol. 122, 1661– 1668 (1997).

    CAS  Article  Google Scholar 

  4. 4

    Mihic, S. J. et al. Sites of alcohol and volatile anaesthetic action on GABA A and glycine receptors. Nature 389, 385–389 (1997).

    CAS  Article  Google Scholar 

  5. 5

    Wick, M. J. et al. Mutations of γ-aminobutyric acid and glycine receptors change alcohol cutoff: evidence for an alcohol receptor? Proc. Natl. Acad. Sci. USA 95, 6504–6509 (1998).

    CAS  Article  Google Scholar 

  6. 6

    Peoples, R. W. & Weight, F. F. Cutoff in potency implicates alcohol inhibition of N-methyl-D-aspartate receptors in alcohol intoxication. Proc. Natl. Acad. Sci. USA 92, 2825– 2829 (1995).

    CAS  Article  Google Scholar 

  7. 7

    Lovinger, D. M. & White, G. Ethanol potentiation of 5-hydroxytryptamine3 receptor-mediated ion current in neuroblastoma cells and isolated adult mammalian neurons. Mol. Pharmacol. 40, 263–270 (1991).

    CAS  PubMed  Google Scholar 

  8. 8

    Li, C., Peoples, R. W. & Weight, F. F. Alcohol action on a neuronal membrane receptor: evidence for a direct interaction with the receptor protein. Proc. Natl. Acad. Sci. USA 91, 8200–8204 (1994).

    CAS  Article  Google Scholar 

  9. 9

    Treistman, S. N. et al. Effects of ethanol on calcium channels, potassium channels, and vasopressin release. Ann. NY. Acad. Sci. 625, 249–263 (1991).

    CAS  Article  Google Scholar 

  10. 10

    Covarrubias, M. & Rubin, E. Ethanol selectively blocks a noninactivating K+ current expressed in Xenopus oocytes. Proc. Natl. Acad. Sci. USA 90, 6957–6960 (1993).

    CAS  Article  Google Scholar 

  11. 11

    North, R. A. Drug receptors and the inhibition of nerve cells. Br. J. Pharmacol. 98, 13–28 ( 1989).

    CAS  Article  Google Scholar 

  12. 12

    Ikeda, K., Kobayashi, T., Ichikawa, T., Usui, H. & Kumanishi, T. Functional couplings of the δ- and the κ-opioid receptors with the G-protein-activated K+ channel. Biochem. Biophys. Res. Commun. 208, 302–308 (1995).

    CAS  Article  Google Scholar 

  13. 13

    Ikeda, K. et al. Comparison of the three mouse G-protein-activated K+ (GIRK) channels and functional couplings of the opioid receptors with the GIRK1 channel. Ann. NY. Acad. Sci. 801, 95–109 (1996).

    CAS  Article  Google Scholar 

  14. 14

    Ikeda, K. et al. Functional coupling of the nociceptin/orphanin FQ receptor with the G-protein-activated K+ (GIRK) channel. Mol. Brain Res. 45, 117–126 ( 1997).

    CAS  Article  Google Scholar 

  15. 15

    Reuveny, E. et al. Activation of the cloned muscarinic potassium channel by G protein βγ subunits. Nature 370, 143–146 (1994).

    CAS  Article  Google Scholar 

  16. 16

    Brown, A. M. & Birnbaumer, L. Ionic channels and their regulation by G protein subunits. Annu. Rev. Physiol. 52, 197–213 (1990).

    CAS  Article  Google Scholar 

  17. 17

    Doupnik, C. A., Davidson, N. & Lester, H. A. The inward rectifier potassium channel family. Curr. Opin. Neurobiol. 5, 268–277 (1995).

    CAS  Article  Google Scholar 

  18. 18

    Kobayashi, T. et al. Molecular cloning of a mouse G-protein-activated K+ channel (mGIRK1) and distinct distributions of three GIRK (GIRK1, 2 and 3) mRNAs in mouse brain. Biochem. Biophys. Res. Commun. 208, 1166–1173 (1995).

    CAS  Article  Google Scholar 

  19. 19

    Lesage, F. et al. Molecular properties of neuronal G-protein-activated inwardly rectifying K+ channels. J. Biol. Chem. 270, 28660–28667 (1995).

    CAS  Article  Google Scholar 

  20. 20

    Patil, N. et al. A potassium channel mutation in weaver mice implicates membrane excitability in granule cell differentiation. Nat. Genet. 11, 126–129 ( 1995).

    CAS  Article  Google Scholar 

  21. 21

    Wickman, K., Seldin, M. F., Gendler, S. J. & Clapham, D. E. Partial structure, chromosome localization, and expression of the mouse Girk4 gene. Genomics 40, 395– 401 (1997).

    CAS  Article  Google Scholar 

  22. 22

    Karschin, C., Diβmann, E., Stuhmer, W. & Karschin, A. IRK(1–3) and GIRK(1–4) inwardly rectifying K+ channel mRNAs are differentially expressed in the adult rat brain. J. Neurosci. 16, 3559–3570 ( 1996).

    CAS  Article  Google Scholar 

  23. 23

    Liao, Y. J., Jan, Y. N. & Jan, L. Y. Heteromultimerization of G-protein-gated inwardly rectifying K+ channel proteins GIRK1 and GIRK2 and their altered expression in weaver brain. J. Neurosci. 16, 7137–7150 (1996).

    CAS  Article  Google Scholar 

  24. 24

    Krapivinsky, G. et al. The G-protein-gated atrial K+ channel I KACh is a heteromultimer of two inwardly rectifying K+-channel proteins. Nature 374, 135– 141 (1995).

    CAS  Article  Google Scholar 

  25. 25

    Signorini, S., Liao, Y. J., Duncan, S. A., Jan, L. Y. & Stoffel, M. Normal cerebellar development but susceptibility to seizures in mice lacking G protein-coupled, inwardly rectifying K+ channel GIRK2. Proc. Natl. Acad. Sci. USA 94, 923–927 (1997).

    CAS  Article  Google Scholar 

  26. 26

    Wickman, K., Nemec, J., Gendler, S. J. & Clapham, D. E. Abnormal heart rate regulation in GIRK4 knockout mice. Neuron 20, 103–114 ( 1998).

    CAS  Article  Google Scholar 

  27. 27

    Lyon, R. C., McComb, J. A., Schreurs, J. & Goldstein, D. B. A relationship between alcohol intoxication and the disordering of brain membranes by a series of short-chain alcohols. J. Pharmacol. Exp. Ther. 218, 669–675 (1981).

    CAS  PubMed  Google Scholar 

  28. 28

    Yan, K. & Gautam, N. A domain on the G protein β subunit interacts with both adenylyl cyclase 2 and the muscarinic atrial potassium channel. J. Biol. Chem. 271, 17597– 17600 (1996).

    CAS  Article  Google Scholar 

  29. 29

    Devic, E. et al. The mRNA encoding a β subunit of heterotrimeric GTP-binding proteins is localized to the animal pole of Xenopus laevis oocyte and embryos. Mech. Dev. 59, 141– 151 (1996).

    CAS  Article  Google Scholar 

  30. 30

    Slesinger, P. A., Stoffel, M., Jan, Y. N. & Jan, L. Y. Defective γ-aminobutyric acid type B receptor-activated inwardly rectifying K+ currents in cerebellar granule cells isolated from weaver and Girk2 null mutant mice. Proc. Natl. Acad. Sci. USA 94, 12210–12217 (1997).

    CAS  Article  Google Scholar 

  31. 31

    Osmanovic, S. S. & Shefner, S. A. Ethanol enhances inward rectification in rat locus ceruleus neurons by increasing the extracellular potassium concentration. J. Pharmacol. Exp. Ther. 271 , 334–342 (1994).

    CAS  PubMed  Google Scholar 

  32. 32

    Shefner, S. A. & Tabakoff, B. Basal firing rate of rat locus coeruleus neurons affects sensitivity to ethanol. Alcohol 2, 239–243 ( 1985).

    CAS  Article  Google Scholar 

  33. 33

    Carlen, P. L., Gurevich, N. & Durand, D. Ethanol in low doses augments calcium-mediated mechanisms measured intracellularly in hippocampal neurons. Science 215, 306–309 (1982).

    CAS  Article  Google Scholar 

  34. 34

    Lakhlani, P. P. et al. Substitution of a mutant α2a-adrenergic receptor via "hit and run" gene targeting reveals the role of this subtype in sedative, analgesic, and anesthetic-sparing responses in vivo. Proc. Natl. Acad. Sci. USA 94, 9950–9955 (1997).

    CAS  Article  Google Scholar 

  35. 35

    Penna, M., Brugere, S., Canas, M. & Saavedra, A. Cardiorespiratory reflex effects induced by intravenus administration of ethanol in rats. Alcohol 2, 603–609 ( 1985).

    CAS  Article  Google Scholar 

  36. 36

    Kobayashi, T., Ikeda, K. & Kumanishi, T. Effects of clozapine on the δ- and κ-opioid receptors and the G-protein-activated K+ (GIRK) channel expressed in Xenopus oocytes. Br. J. Pharmacol. 123, 421–426 (1998).

    CAS  Article  Google Scholar 

  37. 37

    Hamill, O. P., Marty, A., Neher, E., Sakmann, B. & Sigworth, F. J. Improved patch clamp techniques for high-resolution current recording from cells and cell free patches. Pflugers Arch. 391, 85–100 ( 1981).

    CAS  Article  Google Scholar 

  38. 38

    Ikeda, K. et al. Unique behavioural phenotypes of recombinant-inbred CXBK mice: Partial deficiency of sensitivity to μ- and κ-agonists. Neurosci. Res. 34, 149–155 (1999).

    CAS  Article  Google Scholar 

  39. 39

    Ikeda, K. et al. Reduced spontaneous activity of mice defective in the ε4 subunit of the NMDA receptor channel. Mol. Brain Res. 33, 61–71 (1995).

    CAS  Article  Google Scholar 

  40. 40

    Harris, R. A. et al. Mutant mice lacking the γ isoform of protein kinase C show decreased behavioral actions of ethanol and altered function of γ-aminobutyrate type A receptors. Proc. Natl. Acad. Sci. USA 92, 3658–3662 (1995).

    CAS  Article  Google Scholar 

Download references


We thank J. G. Connolly and R. Kado for critical reading of the manuscript, K. Sakimura, K. Shimoji, Y. Ishihara, T. Someya and K. Baba for their cooperation and H. Kishida, N. Yamazaki, T. Ichikawa and K. Kobayashi for their assistance. This work was supported by a research grant from the Ministry of Education, Science, Sports and Culture of Japan, by the Cooperative Research Program of the RIKEN Brain Science Institute and in part by Research for the Future Program from the Japan Society for the Promotion of Science.

Author information



Corresponding author

Correspondence to Toru Kobayashi.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kobayashi, T., Ikeda, K., Kojima, H. et al. Ethanol opens G-protein-activated inwardly rectifying K+ channels. Nat Neurosci 2, 1091–1097 (1999).

Download citation


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing