Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Phenylethanolamines inhibit NMDA receptors by enhancing proton inhibition

Abstract

The phenylethanolamines, ifenprodil and CP-101,606, are NMDA receptor antagonists with promising neuroprotective properties. In recombinant NMDA receptors expressed in Xenopus oocytes, we found that these drugs inhibit NMDA receptors through a unique mechanism, making the receptor more sensitive to inhibition by protons, an endogenous negative modulator. These findings support a critical role for the proton sensor in gating the NMDA receptor and point the way to identifying a context-dependent NMDA receptor antagonist that is inactive at physiological pH, but is a potent inhibitor during the acidic conditions that arise during epilepsy, ischemia and brain trauma.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: CP-101,606 and ifenprodil inhibit NMDA receptors in a subunit selective and noncompetitive fashion.
Figure 2: Phenylethanolamines enhance proton inhibition of the NMDA receptor.
Figure 3: Alkaline pH reduces ifenprodil inhibition but not ifenprodil binding.
Figure 4: Equivalent effect of NR1-1a mutations on inhibition by protons and ifenprodil.
Figure 5: Spermine and exon 5 synergistically reduce inhibition by CP-101,606.
Figure 6: Ifenprodil and CP-101,606 differ in their pH dependence.
Figure 7: Schematic diagram of the proposed interaction between phenylethanolamines, spermine, exon 5 and the proton sensor (Xδ–).

Similar content being viewed by others

References

  1. Choi, D. W. Excitotoxic cell death. J. Neurobiol. 23, 1261–1276 (1992).

    Article  CAS  Google Scholar 

  2. Dingledine, R., McBain, C. J. & McNamara, J. O. Excitatory amino acid receptors in epilepsy. Trends Pharmacol. Sci. 11, 334–338 (1990).

    Article  CAS  Google Scholar 

  3. Meldrum, B. & Garthwaite, J. Excitatory amino acid neurotoxicity and neurodegenerative disease. Trends Pharmacol. Sci. 11, 379–387 (1990).

    Article  CAS  Google Scholar 

  4. Giffard, R. G., Monyer, H., Christine, C. W. & Choi, D. W. Acidosis reduces NMDA receptor activation, glutamate neurotoxicity, and oxygen-glucose deprivation neuronal injury in cortical cultures. Brain Res. 506, 339–342 (1990).

    Article  CAS  Google Scholar 

  5. Tang, C.-M, Dichter, M. & Morad, M. Modulation of the N-methyl-D-aspartate channel by extracellular H+. Proc. Natl. Acad. Sci. USA 87, 6445–6449 (1990).

    Article  CAS  Google Scholar 

  6. Traynelis, S. F. & Cull-Candy, S. G. Proton inhibition of N-methyl-D-aspartate receptors in cerebellar neurons. Nature 345, 347–350 ( 1990).

    Article  CAS  Google Scholar 

  7. Traynelis, S. F. & Cull-Candy, S. G. Pharmacological properties and H+ sensitivity of excitatory amino acid receptor channels in rat cerebellar granule neurones. J. Physiol. (Lond.) 433, 727–763 ( 1991).

    Article  CAS  Google Scholar 

  8. Vyklick´y, L. Jr, Vlachová, V. & Krusek, J. The effect of external pH changes on responses to excitatory amino acids in mouse hippocampal neurones. J. Physiol. (Lond.) 430, 497– 517 (1990).

    Article  Google Scholar 

  9. Chesler, M. & Kaila, K. Modulation of pH by neuronal activity. Trends Neurosci. 15, 396– 402 (1992).

    Article  CAS  Google Scholar 

  10. Siesjo, B. K. Acid-base homoeostasis in the brain: physiology, chemistry and neurochemical pathology. Prog. Brain Res. 63, 121– 153 (1985).

    Article  CAS  Google Scholar 

  11. Silver, I. A. & Erecinska, M. Ion homeostasis in rat brain in vivo: intra- and extracellular [Ca2+] and [H+] in the hippocampus during recovery from short-term, transient ischemia. J. Cereb. Blood Flow Metab. 12, 759– 772 (1992).

    Article  CAS  Google Scholar 

  12. Kaku, D. A., Giffard, R. G. & Choi, D. W. Neuroprotective effects of glutamate antagonists and extracellular acidity. Science 260, 1516–1518 (1993).

    Article  CAS  Google Scholar 

  13. Carter, C. J. et al. Ifenprodil and SL 82.0175 as cerebral anti-ischemic agents. II. Evidence for N-methyl-D-aspartate receptor antagonist properties. J. Pharmacol. Exp. Ther. 247, 1222– 1232 (1988).

    CAS  PubMed  Google Scholar 

  14. Williams, K. Ifenprodil discriminates subtypes of the N-methyl-D-aspartate receptor: Selectivity and mechanisms at recombinant heteromeric receptors. Mol. Pharmacol. 44, 851–859 ( 1993).

    CAS  PubMed  Google Scholar 

  15. Williams, K. Pharmacological properties of recombinant N-methyl-D-aspartate (NMDA) receptors containing the ε4 (NR2D) subunit. Neurosci. Lett. 184, 181–184 (1995).

    Article  CAS  Google Scholar 

  16. Blahos, J. 2nd & Wenthold, R. J. Relationship between N-methyl-D-aspartate receptor NR1 splice variants and NR2 subunits. J. Biol. Chem. 271, 15669– 15674 (1996).

    Article  CAS  Google Scholar 

  17. Luo, J., Wang, Y., Yasuda, R. P., Dunah, A. W. & Wolfe, B. B. The majority of N-methyl-D-aspartate receptor complexes in adult rat cerebral cortex contain at least three different subunits (NR1/NR2A/NR2B). Mol. Pharmacol. 51, 79– 86 (1997).

    Article  CAS  Google Scholar 

  18. Graham, D., Darles, G. & Langer, S. Z. The neuroprotective properties of ifenprodil, a novel NMDA receptor antagonist, in neuronal cell culture toxicity studies. Eur. J. Pharmacol. 226, 373–376 (1992).

    Article  CAS  Google Scholar 

  19. Gotti, B. et al. Ifenprodil and SL 82.0715 as cerebral anti-ischemic agents. I. Evidence for efficacy in models of focal cerebral ischemia. J. Pharmacol. Exp. Ther. 247, 1211–1221 (1988).

    CAS  PubMed  Google Scholar 

  20. Tamura, Y. et al. Ifenprodil prevents glutamate cytotoxicity via polyamine modulatory sites of N-methyl-D-aspartate receptors in cultured cortical neurons. J. Pharmacol. Exp. Ther. 265, 1017– 1025 (1993).

    CAS  PubMed  Google Scholar 

  21. Reynolds, I. J. & Miller, R. J. Ifenprodil is a novel type of N-methyl-D-aspartate receptor antagonist: interaction with polyamines. Mol. Pharmacol. 36, 758– 765 (1989).

    CAS  PubMed  Google Scholar 

  22. Carter, C. J., Lloyd, K. G., Zivkovic, B. & Scatton, B. Ifenprodil and SL 82.0715 as cerebral antiischemic agents. III. Evidence for antagonistic effects at the polyamine modulatory site within the N-methyl-D-aspartate receptor complex. J. Pharmacol. Exp. Ther. 253, 475–482 (1990).

    CAS  PubMed  Google Scholar 

  23. Legendre, P. & Westbrook, G. L. Ifenprodil blocks N-methyl-D-aspartate receptors by a two-component mechanism. Mol. Pharmacol. 40, 289–298 (1991).

    CAS  PubMed  Google Scholar 

  24. Kew, J. N. C., Trube, G. & Kemp, J. A. A novel mechanism of activity-dependent NMDA receptor antagonism describes the effect of ifenprodil in rat cultured cortical neurones. J. Physiol. (Lond.) 497, 761– 772 (1996).

    Article  CAS  Google Scholar 

  25. Chenard, B. L. et al. Separation of α adrenergic and N-methyl-D-aspartate antagonist activity in a series of ifenprodil compounds. J. Med. Chem. 34, 3085–3090 ( 1991).

    Article  CAS  Google Scholar 

  26. McCool, B. A. & Lovinger, D. M. Ifenprodil inhibition of the 5-hydroxytryptamine3 receptor. Neuropharmacology 34, 621–629 (1995).

    Article  CAS  Google Scholar 

  27. Fischer, G. et al. Ro 25–6981, a highly potent and selective blocker of N-methyl-D-aspartate receptors containing the NR2B subunit. Characterization in vitro. J. Pharmacol. Exp. Ther. 283, 1285–1292 (1997).

    CAS  PubMed  Google Scholar 

  28. Kew, J. N. C., Trube, G. & Kemp, J. A. State-dependent NMDA receptor antagonism by Ro 8-4304, a novel NR2B selective, non-competitive, voltage-independent antagonist. Brit. J. Pharmacol. 123, 463–472 (1998).

    Article  CAS  Google Scholar 

  29. Chenard, B. L. et al. (1S,2S)-1-(4-hydroxyphenyl)-2-(4-hydroxy-4-phenylpiperidino)-1-propanol: a potent new neuroprotectant which blocks N-methyl-D-aspartate responses. J. Med. Chem. 38, 3138– 3145 (1995).

    Article  CAS  Google Scholar 

  30. Williams, K., Russell, S. L., Shen, Y. M. & Molinoff, P. B. Developmental switch in the expression of NMDA receptors occurs in vivo and in vitro. Neuron 10, 267 –278 (1993).

    Article  CAS  Google Scholar 

  31. Menniti, F. et al. CP-101,606, a potent neuroprotectant selective for forebrain neurons. Eur. J. Pharmacol. 331, 117– 126 (1997).

    Article  CAS  Google Scholar 

  32. Kleckner, N. W. & Dingledine, R. Requirement for glycine in activation of NMDA receptors expressed in Xenopus oocytes. Science 241, 835–837 (1988).

    Article  CAS  Google Scholar 

  33. Traynelis, S. F., Burgess, M. F., Zheng, F., Lyuboslavsky, P. & Powers, J. L. Control of voltage-independent zinc inhibition of NMDA receptors by the NR1 subunit. J. Neurosci. 18, 6163–6175 ( 1998).

    Article  CAS  Google Scholar 

  34. Traynelis, S. F., Hartley, M. & Heinemann, S. F. Control of proton sensitivity of the NMDA receptor by RNA splicing and polyamines. Science 268, 873–876 (1995).

    Article  CAS  Google Scholar 

  35. Sullivan, J. M. et al. Identification of two cysteine residues that are required for redox modulation of the NMDA subtype of glutamate receptor. Neuron 13, 929–936 ( 1994).

    Article  CAS  Google Scholar 

  36. Williams, K., Kashiwagi, K., Fukuchi, J. & Igarashi, K. An acidic amino acid in the N-methyl-D aspartate receptor that is important for spermine stimulation. Mol. Pharmacol. 48, 1087–1097 (1995).

    CAS  PubMed  Google Scholar 

  37. Kashiwagi, K., Fukuchi, J.-I., Chao, J., Igarashi, K. & Williams, K. An aspartate residue in the extracellular loop of the N-methyl-D-aspartate receptor controls sensitivity to spermine and protons. Mol. Pharmacol. 49, 1131– 1141 (1996).

    CAS  PubMed  Google Scholar 

  38. Pahk, A. J. & Williams, K. Influence of extracellular pH on inhibition by ifenprodil at N-methyl-D-aspartate receptors in Xenopus oocytes. Neurosci. Lett. 225, 29– 32 (1997).

    Article  CAS  Google Scholar 

  39. Gallagher, M. J., Huang, H., Pritchett, D. R. & Lynch, D. R. Interactions between ifenprodil and the NR2B subunit of the N-methyl-D-aspartate receptor. J. Biol. Chem. 271, 9603– 9611 (1996).

    Article  CAS  Google Scholar 

  40. Root, M. J. & MacKinnon, R. Two identical noninteracting sites in an ion channel revealed by proton transfer. Science 265, 1852–1856 (1994).

    Article  CAS  Google Scholar 

  41. Davis, S. M., Albers, G. W., Diener, H.-C., Lees, K. R. & Norris, J. Termination of acute stroke studies involving selfotel treatment. Lancet 349, 32 (1997).

    Article  CAS  Google Scholar 

  42. Lees, K. R. Cerestat and other NMDA antagonists in ischemic stroke. Neurology 49, S66–S69 ( 1997).

    Article  CAS  Google Scholar 

  43. Bath, C. P. et al. The effects of ifenprodil and eliprodil on voltage-dependent Ca2+ channels and in gerbil global cerebral ischemia. Eur. J. Pharmacol. 299, 103–112 (1996).

    Article  CAS  Google Scholar 

  44. Biton, B., Godet, D., Granger, P. & Avenet, P. R- and L-type Ca2+ channels are insensitive to eliprodil in rat cultured cerebellar neurons. Eur J. Pharmacol. 323, 277– 281 (1997).

    Article  CAS  Google Scholar 

  45. Pasternack, M., Smirnov, S. & Kaila, K. Proton modulation of functionally distinct GABA A receptors in acutely isolated pyramidal neurons of rat hippocampus. Neuropharmacology 35, 1279– 1288 (1996).

    Article  CAS  Google Scholar 

  46. Traynelis, S. F. in pH and Brain Function (eds Kaila, K. & Ransom, B. R.) 407–437 (Wiley-Liss, New York, 1998 ).

    Google Scholar 

  47. Dingledine, R., Hume, R. I. & Heinemann, S. F. Structural determinants of barium permeation and rectification in non-NMDA glutamate receptor channels. J. Neurosci. 12, 4080–4087 ( 1992).

    Article  CAS  Google Scholar 

  48. Hoch, D. B. & Dingledine, R. GABAergic neurons in rat hippocampal culture. Dev. Brain Res. 25, 53– 64 (1986).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Pfizer, Inc. for the gift of CP-101,606, S. Nakanishi, K. Moriyoshi, Stephen Heinemann and Keith Williams for NMDA receptor clones or mutants, James B. Revennaugh for technical assistance, Nancy F. Ciliax for preparing neuronal cultures and Kimberley Lindsey for work on early neuroprotection experiments. We also thank Keith Williams for pointing out the pH dependence of the E181Q mutation and for comments on the manuscript. This work was supported by AES/EFA Fellowships (D.D.M. and J.J.D.), the NIH (R.D. and S.F.T.), the John Merck Fund (S.F.T.) and Bristol-Myers Squibb (R.D.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David D. Mott.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mott, D., Doherty, J., Zhang, S. et al. Phenylethanolamines inhibit NMDA receptors by enhancing proton inhibition . Nat Neurosci 1, 659–667 (1998). https://doi.org/10.1038/3661

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/3661

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing