Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Dopamine depletion impairs precursor cell proliferation in Parkinson disease

Abstract

Cerebral dopamine depletion is the hallmark of Parkinson disease. Because dopamine modulates ontogenetic neurogenesis, depletion of dopamine might affect neural precursors in the subependymal zone and subgranular zone of the adult brain. Here we provide ultrastructural evidence showing that highly proliferative precursors in the adult subependymal zone express dopamine receptors and receive dopaminergic afferents. Experimental depletion of dopamine in rodents decreases precursor cell proliferation in both the subependymal zone and the subgranular zone. Proliferation is restored completely by a selective agonist of D2-like (D2L) receptors. Experiments with neural precursors from the adult subependymal zone grown as neurosphere cultures confirm that activation of D2L receptors directly increases the proliferation of these precursors. Consistently, the numbers of proliferating cells in the subependymal zone and neural precursor cells in the subgranular zone and olfactory bulb are reduced in postmortem brains of individuals with Parkinson disease. These observations suggest that the generation of neural precursor cells is impaired in Parkinson disease as a consequence of dopaminergic denervation.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Dopaminergic innervation in the adult mammalian subependymal zone.
Figure 2: Subependymal zone proliferation parallels loss and regeneration of dopaminergic fibers.
Figure 3: Persistent dopaminergic denervation decreases and dopaminergic pharmacotherapy restores subependymal zone proliferation.
Figure 4: Activation of the D2L receptor stimulates precursor cell proliferation in neurosphere cultures.
Figure 5: Dopaminergic denervation reduces the proliferation of EGFR+ cells and the number of A-cells.
Figure 6: Dopaminergic denervation reduces the number of newborn olfactory neurons.
Figure 7: Dopaminergic innervation modulates cell proliferation in the hippocampus.
Figure 8: Reduced number of precursor cells in individuals with Parkinson disease (PD).

Similar content being viewed by others

References

  1. Bernheimer, H., Birkmayer, W., Hornykiewicz, O., Jellinger, K. & Seitelberger, F. Brain dopamine and the syndromes of Parkinson and Huntington. Clinical, morphological and neurochemical correlations. J. Neurol. Sci. 20, 415–455 (1973).

    Article  CAS  Google Scholar 

  2. Hirsch, E., Graybiel, A.M. & Agid, Y.A. Melanized dopaminergic neurons are differentially susceptible to degeneration in Parkinson's disease. Nature 334, 345–348 (1988).

    Article  CAS  Google Scholar 

  3. Cameron, H.A., Hazel, T.G. & McKay, R.D. Regulation of neurogenesis by growth factors and neurotransmitters. J. Neurobiol. 36, 287–306 (1998).

    Article  CAS  Google Scholar 

  4. Lidow, M.S. & Rakic, P. Neurotransmitter receptors in the proliferative zones of the developing primate occipital lobe. J. Comp. Neurol. 360, 393–402 (1995).

    Article  CAS  Google Scholar 

  5. Diaz, J. et al. Selective expression of dopamine D3 receptor mRNA in proliferative zones during embryonic development of the rat brain. J. Neurosci. 17, 4282–4292 (1997).

    Article  CAS  Google Scholar 

  6. Ohtani, N., Goto, T., Waeber, C. & Bhide, P.G. Dopamine modulates cell cycle in the lateral ganglionic eminence. J. Neurosci. 23, 2840–2850 (2003).

    Article  CAS  Google Scholar 

  7. Alvarez-Buylla, A., Garcia-Verdugo, J.M. & Tramontin, A.D. A unified hypothesis on the lineage of neural stem cells. Nat. Rev. Neurosci. 2, 287–293 (2001).

    Article  CAS  Google Scholar 

  8. Reynolds, B.A. & Weiss, S. Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 255, 1707–1710 (1992).

    Article  CAS  Google Scholar 

  9. Luskin, M.B. Restricted proliferation and migration of postnatally generated neurons derived from the forebrain subventricular zone. Neuron 11, 173–189 (1993).

    Article  CAS  Google Scholar 

  10. Morshead, C.M. et al. Neural stem cells in the adult mammalian forebrain: a relatively quiescent subpopulation of subependymal cells. Neuron 13, 1071–1082 (1994).

    Article  CAS  Google Scholar 

  11. Doetsch, F., Caille, I., Lim, D.A., Garcia-Verdugo, J.M. & Alvarez-Buylla, A. Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell 97, 703–716 (1999).

    Article  CAS  Google Scholar 

  12. Doetsch, F., Garcia-Verdugo, J.M. & Alvarez-Buylla, A. Cellular composition and three-dimensional organization of the subventricular germinal zone in the adult mammalian brain. J. Neurosci. 17, 5046–5061 (1997).

    Article  CAS  Google Scholar 

  13. Doetsch, F., Petreanu, L., Caille, I., Garcia-Verdugo, J.M. & Alvarez-Buylla, A. EGF converts transit-amplifying neurogenic precursors in the adult brain into multipotent stem cells. Neuron 36, 1021–1034 (2002).

    Article  CAS  Google Scholar 

  14. Przedborski, S. & Vila, M. The 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model: a tool to explore the pathogenesis of Parkinson's disease. Ann. NY Acad. Sci. 991, 189–198 (2003).

    Article  CAS  Google Scholar 

  15. Curtis, M.A. et al. Increased cell proliferation and neurogenesis in the adult human Huntington's disease brain. Proc. Natl. Acad. Sci. USA 100, 9023–9027 (2003).

    Article  CAS  Google Scholar 

  16. Nait-Oumesmar, B. et al. Progenitor cells of the adult mouse subventricular zone proliferate, migrate and differentiate into oligodendrocytes after demyelination. Eur. J. Neurosci. 11, 4357–4366 (1999).

    Article  CAS  Google Scholar 

  17. Morshead, C.M. & van der Kooy, D. Postmitotic death is the fate of constitutively proliferating cells in the subependymal layer of the adult mouse brain. J. Neurosci. 12, 249–256 (1992).

    Article  CAS  Google Scholar 

  18. van Praag, H. et al. Functional neurogenesis in the adult hippocampus. Nature 415, 1030–1034 (2002).

    Article  CAS  Google Scholar 

  19. Lendahl, U., Zimmerman, L.B. & McKay, R.D. CNS stem cells express a new class of intermediate filament protein. Cell 60, 585–595 (1990).

    Article  CAS  Google Scholar 

  20. Gasbarri, A., Sulli, A. & Packard, M.G. The dopaminergic mesencephalic projections to the hippocampal formation in the rat. Prog. Neuropsychopharmacol. Biol. Psychiatry 21, 1–22 (1997).

    Article  CAS  Google Scholar 

  21. Ridet, I. & Privat, A. Volume transmission. Trends Neurosci. 23, 58–59 (2000).

    Article  CAS  Google Scholar 

  22. Backhouse, B., Barochovsky, O., Malik, C., Patel, A.J. & Lewis, P.D. Effects of haloperidol on cell proliferation in the early postnatal rat brain. Neuropathol. Appl. Neurobiol. 8, 109–116 (1982).

    Article  CAS  Google Scholar 

  23. Wakade, C.G., Mahadik, S.P., Waller, J.L. & Chiu, F.C. Atypical neuroleptics stimulate neurogenesis in adult rat brain. J. Neurosci. Res. 69, 72–79 (2002).

    Article  CAS  Google Scholar 

  24. Dawirs, R.R., Hildebrandt, K. & Teuchert-Noodt, G. Adult treatment with haloperidol increases dentate granule cell proliferation in the gerbil hippocampus. J. Neural. Transm. 105, 317–327 (1998).

    Article  CAS  Google Scholar 

  25. Malberg, J.E., Eisch, A.J., Nestler, E.J. & Duman, R.S. Chronic antidepressant treatment increases neurogenesis in adult rat hippocampus. J. Neurosci. 20, 9104–9110 (2000).

    Article  CAS  Google Scholar 

  26. Santarelli, L. et al. Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science 301, 805–809 (2003).

    Article  CAS  Google Scholar 

  27. Cameron, H.A., McEwen, B.S. & Gould, E. Regulation of adult neurogenesis by excitatory input and NMDA-receptor activation in the dentate gyrus. J. Neurosci. 15, 4687–4692 (1995).

    Article  CAS  Google Scholar 

  28. Brezun, J.M. & Daszuta, A. Depletion in serotonin decreases neurogenesis in the dentate gyrus and the subventricular zone of adult rats. Neuroscience 89, 999–1002 (1999).

    Article  CAS  Google Scholar 

  29. Kulkarni, V.A., Jha, S. & Vaidya, V.A. Depletion of norepinephrine decreases the proliferation, but does not influence the survival and differentiation, of granule cell progenitors in the adult rat hippocampus. Eur. J. Neurosci. 16, 2008–2012 (2002).

    Article  Google Scholar 

  30. Zhao, M. et al. Evidence for neurogenesis in the adult mammalian substantia nigra. Proc. Natl. Acad. Sci. USA 100, 7925–7930 (2003).

    Article  CAS  Google Scholar 

  31. Sanai, N. et al. Unique astrocyte ribbon in adult human brain contains neural stem cells but lacks chain migration. Nature 427, 740–744 (2004).

    Article  CAS  Google Scholar 

  32. Liu, Z. & Martin, L.J. Olfactory bulb core is a rich source of neural progenitor and stem cells in adult rodent and human. J. Comp. Neurol. 459, 368–391 (2003).

    Article  Google Scholar 

  33. Rochefort, C., Gheusi, G., Vincent, J.D. & Lledo, P.M. Enriched odor exposure increases the number of newborn neurons in the adult olfactory bulb and improves odor memory. J. Neurosci. 22, 2679–2689 (2002).

    Article  CAS  Google Scholar 

  34. Scotto-Lomassese, S. et al. Suppression of adult neurogenesis impairs olfactory learning and memory in an adult insect. J. Neurosci. 23, 9289–9296 (2003).

    Article  CAS  Google Scholar 

  35. Shors, T.J. et al. Neurogenesis in the adult is involved in the formation of trace memories. Nature 410, 372–376 (2001).

    Article  CAS  Google Scholar 

  36. Nilsson, M., Perfilieva, E., Johansson, U., Orwar, O. & Eriksson, P.S. Enriched environment increases neurogenesis in the adult rat dentate gyrus and improves spatial memory. J. Neurobiol. 39, 569–578 (1999).

    Article  CAS  Google Scholar 

  37. Drapeau, E., et al. Spatial memory performances of aged rats in the water maze predict levels of hippocampal neurogenesis. Proc. Natl. Acad. Sci. USA 100, 14385–14390 (2003).

    Article  CAS  Google Scholar 

  38. Berendse, H.W. et al. Subclinical dopaminergic dysfunction in asymptomatic Parkinson's disease patients' relatives with a decreased sense of smell. Ann. Neurol. 50, 34–41 (2001).

    Article  CAS  Google Scholar 

  39. Oertel, W.H. et al. Depression in Parkinson's disease. An update. Adv. Neurol. 86, 373–383 (2001).

    CAS  PubMed  Google Scholar 

  40. Pillon, B. et al. Memory for spatial location in 'de novo' parkinsonian patients. Neuropsychologia 35, 221–228 (1997).

    Article  CAS  Google Scholar 

  41. Braak, H. et al. Staging of brain pathology related to sporadic Parkinson's disease. Neurobiol. Aging 24, 197–211 (2003).

    Article  Google Scholar 

  42. Hoogland, P.V., van den Berg, R. & Huisman, E. Misrouted olfactory fibres and ectopic olfactory glomeruli in normal humans and in Parkinson and Alzheimer patients. Neuropathol. Appl. Neurobiol. 29, 303–311 (2003).

    Article  CAS  Google Scholar 

  43. Laakso, M.P. et al. Hippocampal volumes in Alzheimer's disease, Parkinson's disease with and without dementia, and in vascular dementia: an MRI study. Neurology 46, 678–681 (1996).

    Article  CAS  Google Scholar 

  44. Riekkinen, P. Jr. et al. Hippocampal atrophy is related to impaired memory, but not frontal functions in non-demented Parkinson's disease patients. NeuroReport 9, 1507–1511 (1998).

    Article  Google Scholar 

  45. Camicioli, R. et al. Parkinson's disease is associated with hippocampal atrophy. Mov. Disord. 18, 784–790 (2003).

    Article  Google Scholar 

  46. Franklin, B.J. & Paxinos, G.T. The Mouse Brain in Stereotaxic Coordinates (Academic, London, 1996).

    Google Scholar 

  47. Paxinos, G.T. & Watson, C. The Rat Brain in Stereotaxic Coordinates (Academic, London, 1998).

    Google Scholar 

Download references

Acknowledgements

We thank B. Mathieu and C. Cappe for technical assistance and M. Ruberg for discussions. This work was funded by the Institut National de la Santé et de la Recherche Médicale, the Deutsche Forschungsgemeinschaft (ho2402/2-1), the Fondation pour la Recherche Médicale (ACE20030307094), the Peter Hofmann research project and the Parkinson's Disease Foundation–National Parkinson Foundation Joint Research Grant Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Günter U Höglinger.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Höglinger, G., Rizk, P., Muriel, M. et al. Dopamine depletion impairs precursor cell proliferation in Parkinson disease. Nat Neurosci 7, 726–735 (2004). https://doi.org/10.1038/nn1265

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1265

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing