Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Neuregulin 1-erbB signaling and the molecular/cellular basis of schizophrenia

Abstract

Schizophrenia is a devastating psychiatric disease that affects 0.5–1% of the world's adult population. The hypothesis that this disease is a developmental disorder of the nervous system with late onset of its characteristic symptoms has been gaining acceptance in past years. However, the anatomical, cellular and molecular bases of schizophrenia remain unclear. Numerous studies point to alterations in different aspects of brain development as possible causes of schizophrenia, including defects in neuronal migration, neurotransmitter receptor expression and myelination. Recently, the gene that encodes neuregulin-1 (NRG1) has been identified as a potential susceptibility gene for schizophrenia, and defects in the expression of erbB3, one of the NRG1 receptors, have been shown to occur in the prefrontal cortex of schizophrenic patients, suggesting that NRG1-erbB signaling is involved in the pathogenesis of schizophrenia. These findings open new approaches to defining the molecular and cellular basis of schizophrenia in more mechanistic terms.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Potential relationships between NRG1 function and schizophrenia phenotypes.

Similar content being viewed by others

References

  1. Lewis, D.A. & Levitt, P. Schizophrenia as a disorder of neurodevelopment. Annu. Rev. Neurosci. 25, 409–432 (2002).

    Article  CAS  PubMed  Google Scholar 

  2. Lewis, D.A. & Lieberman, J.A. Catching up on schizophrenia: natural history and neurobiology. Neuron 28, 325–334 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. Tsuang, M.T., Stone, W.S. & Faraone, S.V. Genes, environment and schizophrenia. Br. J. Psychiatry Suppl. 40, s18–24 (2001).

    Article  CAS  Google Scholar 

  4. Sklar, P. Linkage analysis in psychiatric disorders: the emerging picture. Annu. Rev. Genomics Hum. Genet. 3, 371–413 (2002).

    Article  CAS  PubMed  Google Scholar 

  5. Buonanno, A. & Fischbach, G.D. Neuregulin and ErbB receptor signaling pathways in the nervous system. Curr. Opin. Neurobiol. 11, 287–296 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. Corfas, G., Rosen, K.M., Aratake, H., Krauss, R. & Fischbach, G.D. Differential expression of ARIA isoforms in the rat brain. Neuron 14, 103–115 (1995).

    Article  CAS  PubMed  Google Scholar 

  7. Falls, D.L., Rosen, K.M., Corfas, G., Lane, W.S. & Fischbach, G.D. ARIA, a protein that stimulates acetylcholine receptor synthesis, is a member of the neu ligand family. Cell 72, 801–815 (1993).

    Article  CAS  PubMed  Google Scholar 

  8. Marchionni, M.A. et al. Glial growth factors are alternatively spliced erbB2 ligands expressed in the nervous system. Nature 362, 312–318 (1993).

    Article  CAS  PubMed  Google Scholar 

  9. Rio, C., Rieff, H.I., Qi, P., Khurana, T.S. & Corfas, G. Neuregulin and erbB receptors play a critical role in neuronal migration. Neuron 19, 39–50 (1997).

    Article  CAS  PubMed  Google Scholar 

  10. Anton, E.S., Marchionni, M.A., Lee, K.F. & Rakic, P. Role of GGF/neuregulin signaling in interactions between migrating neurons and radial glia in the developing cerebral cortex. Development 124, 3501–3510 (1997).

    CAS  PubMed  Google Scholar 

  11. Steiner, H., Blum, M., Kitai, S.T. & Fedi, P. Differential expression of ErbB3 and ErbB4 neuregulin receptors in dopamine neurons and forebrain areas of the adult rat. Exp. Neurol. 159, 494–503 (1999).

    Article  CAS  PubMed  Google Scholar 

  12. Yau, H.J., Wang, H.F., Lai, C. & Liu, F.C. Neural development of the neuregulin receptor ErbB4 in the cerebral cortex and the hippocampus: preferential expression by interneurons tangentially migrating from the ganglionic eminences. Cereb. Cortex 13, 252–264 (2003).

    Article  PubMed  Google Scholar 

  13. Prevot, V. et al. Normal female sexual development requires neuregulin-erbB receptor signaling in hypothalamic astrocytes. J. Neurosci. 23, 230–239 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Liu, Y., Ford, B., Mann, M.A. & Fischbach, G.D. Neuregulins increase alpha7 nicotinic acetylcholine receptors and enhance excitatory synaptic transmission in GABAergic interneurons of the hippocampus. J. Neurosci. 21, 5660–5669 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ozaki, M., Sasner, M., Yano, R., Lu, H.S. & Buonanno, A. Neuregulin-beta induces expression of an NMDA-receptor subunit. Nature 390, 691–694 (1997).

    Article  CAS  PubMed  Google Scholar 

  16. Okada, M. & Corfas, G. Neuregulin1 down-regulates postsynaptic GABAA receptors at the hippocampal inhibitory synapse. Hippocampus, DOI: 10.1002/hipo.10185 (2003).

  17. Stefansson, H. et al. Neuregulin 1 and susceptibility to schizophrenia. Am. J. Hum. Genet. 71, 877–892 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Rieff, H.I. et al. Neuregulin induces GABA(A) receptor subunit expression and neurite outgrowth in cerebellar granule cells. J. Neurosci. 19, 10757–10766 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Cannella, B., Pitt, D., Marchionni, M. & Raine, C.S. Neuregulin and erbB receptor expression in normal and diseased human white matter. J. Neuroimmunol. 100, 233–242 (1999).

    Article  CAS  PubMed  Google Scholar 

  20. Vartanian, T., Fischbach, G. & Miller, R. Failure of spinal cord oligodendrocyte development in mice lacking neuregulin. Proc. Natl. Acad. Sci. USA 96, 731–735 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Fernandez, P.A. et al. Evidence that axon-derived neuregulin promotes oligodendrocyte survival in the developing rat optic nerve. Neuron 28, 81–90 (2000).

    Article  CAS  PubMed  Google Scholar 

  22. Calaora, V. et al. Neuregulin signaling regulates neural precursor growth and the generation of oligodendrocytes in vitro. J. Neurosci. 21, 4740–4751 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Schmucker, J. et al. erbB3 is dispensable for oligodendrocyte development in vitro and in vivo. Glia 44, 67–75 (2003).

    Article  PubMed  Google Scholar 

  24. Vartanian, T., Corfas, G., Li, Y., Fischbach, G.D. & Stefansson, K. A role for the acetylcholine receptor-inducing protein ARIA in oligodendrocyte development. Proc. Natl. Acad. Sci. USA 91, 11626–11630 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Canoll, P.D. et al. GGF/neuregulin is a neuronal signal that promotes the proliferation and survival and inhibits the differentiation of oligodendrocyte progenitors. Neuron 17, 229–243 (1996).

    Article  CAS  PubMed  Google Scholar 

  26. Akbarian, S. et al. Maldistribution of interstitial neurons in prefrontal white matter of the brains of schizophrenic patients. Arch. Gen. Psychiatry 53, 425–436 (1996).

    Article  CAS  PubMed  Google Scholar 

  27. Akbarian, S. et al. Selective alterations in gene expression for NMDA receptor subunits in prefrontal cortex of schizophrenics. J. Neurosci. 16, 19–30 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Rioux, L., Nissanov, J., Lauber, K., Bilker, W.B. & Arnold, S.E. Distribution of microtubule-associated protein MAP2-immunoreactive interstitial neurons in the parahippocampal white matter in subjects with schizophrenia. Am. J. Psychiatry 160, 149–155 (2003).

    Article  PubMed  Google Scholar 

  29. Zavitsanou, K., Ward, P.B. & Huang, X.F. Selective alterations in ionotropic glutamate receptors in the anterior cingulate cortex in schizophrenia. Neuropsychopharmacology 27, 826–833 (2002).

    Article  CAS  PubMed  Google Scholar 

  30. Mohn, A.R., Gainetdinov, R.R., Caron, M.G. & Koller, B.H. Mice with reduced NMDA receptor expression display behaviors related to schizophrenia. Cell 98, 427–436 (1999).

    Article  CAS  PubMed  Google Scholar 

  31. Huntsman, M.M., Tran, B.V., Potkin, S.G., Bunney, W.E., Jr. & Jones, E.G. Altered ratios of alternatively spliced long and short gamma2 subunit mRNAs of the gamma-amino butyrate type A receptor in prefrontal cortex of schizophrenics. Proc. Natl. Acad. Sci. USA 95, 15066–15071 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hakak, Y. et al. Genome-wide expression analysis reveals dysregulation of myelination-related genes in chronic schizophrenia. Proc. Natl. Acad. Sci. USA 98, 4746–4751 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Mirnics, K., Middleton, F.A., Marquez, A., Lewis, D.A. & Levitt, P. Molecular characterization of schizophrenia viewed by microarray analysis of gene expression in prefrontal cortex. Neuron 28, 53–67 (2000).

    Article  CAS  PubMed  Google Scholar 

  34. Volk, D.W., Austin, M.C., Pierri, J.N., Sampson, A.R. & Lewis, D.A. Decreased glutamic acid decarboxylase67 messenger RNA expression in a subset of prefrontal cortical gamma-aminobutyric acid neurons in subjects with schizophrenia. Arch. Gen. Psychiatry 57, 237–245 (2000).

    Article  CAS  PubMed  Google Scholar 

  35. Volk, D., Austin, M., Pierri, J., Sampson, A. & Lewis, D. GABA transporter-1 mRNA in the prefrontal cortex in schizophrenia: decreased expression in a subset of neurons. Am. J. Psychiatry 158, 256–265 (2001).

    Article  CAS  PubMed  Google Scholar 

  36. Uranova, N. et al. Electron microscopy of oligodendroglia in severe mental illness. Brain Res. Bull. 55, 597–610 (2001).

    Article  CAS  PubMed  Google Scholar 

  37. Tkachev, D. et al. Oligodendrocyte dysfunction in schizophrenia and bipolar disorder. Lancet 362, 798–805 (2003).

    Article  CAS  PubMed  Google Scholar 

  38. Hof, P.R., Haroutunian, V., Copland, C., Davis, K.L. & Buxbaum, J.D. Molecular and cellular evidence for an oligodendrocyte abnormality in schizophrenia. Neurochem. Res. 27, 1193–1200 (2002).

    Article  CAS  PubMed  Google Scholar 

  39. Hof, P.R. et al. Loss and altered spatial distribution of oligodendrocytes in the superior frontal gyrus in schizophrenia. Biol. Psychiatry 53, 1075–1085 (2003).

    Article  CAS  PubMed  Google Scholar 

  40. Bartzokis, G. et al. Dysregulated brain development in adult men with schizophrenia: a magnetic resonance imaging study. Biol. Psychiatry 53, 412–421 (2003).

    Article  PubMed  Google Scholar 

  41. Flynn, S.W. et al. Abnormalities of myelination in schizophrenia detected in vivo with MRI, and post-mortem with analysis of oligodendrocyte proteins. Mol. Psychiatry 8, 811–820 (2003).

    Article  CAS  PubMed  Google Scholar 

  42. Foong, J. et al. Investigating regional white matter in schizophrenia using diffusion tensor imaging. Neuroreport 13, 333–336 (2002).

    Article  CAS  PubMed  Google Scholar 

  43. Walker, E. & Bollini, A.M. Pubertal neurodevelopment and the emergence of psychotic symptoms. Schizophr. Res. 54, 17–23 (2002).

    Article  PubMed  Google Scholar 

  44. Freedman, R., Hall, M., Adler, L.E. & Leonard, S. Evidence in postmortem brain tissue for decreased numbers of hippocampal nicotinic receptors in schizophrenia. Biol. Psychiatry 38, 22–33 (1995).

    Article  CAS  PubMed  Google Scholar 

  45. Court, J. et al. Neuronal nicotinic receptors in dementia with Lewy bodies and schizophrenia: alpha-bungarotoxin and nicotine binding in the thalamus. J. Neurochem. 73, 1590–1597 (1999).

    Article  CAS  PubMed  Google Scholar 

  46. Guan, Z.Z., Zhang, X., Blennow, K. & Nordberg, A. Decreased protein level of nicotinic receptor alpha7 subunit in the frontal cortex from schizophrenic brain. Neuroreport 10, 1779–1782 (1999).

    Article  CAS  PubMed  Google Scholar 

  47. Stefansson, H. et al. Association of neuregulin 1 with schizophrenia confirmed in a Scottish population. Am. J. Hum. Genet. 72, 83–87 (2003).

    Article  CAS  PubMed  Google Scholar 

  48. Williams, N.M. et al. Support for genetic variation in neuregulin 1 and susceptibility to schizophrenia. Mol. Psychiatry 8, 485–487 (2003).

    Article  CAS  PubMed  Google Scholar 

  49. Lohmueller, K.E., Pearce, C.L., Pike, M., Lander, E.S. & Hirschhorn, J.N. Meta-analysis of genetic association studies supports a contribution of common variants to susceptibility to common disease. Nat. Genet. 33, 177–182 (2003).

    Article  CAS  PubMed  Google Scholar 

  50. Yang, J.Z. et al. Association study of neuregulin 1 gene with schizophrenia. Mol. Psychiatry 8, 706–709 (2003).

    Article  CAS  PubMed  Google Scholar 

  51. Tang, J.X. et al. Polymorphisms within 5′ end of the Neuregulin 1 gene are genetically associated with schizophrenia in the Chinese population. Mol. Psychiatry 9, 11–12 (2004).

    Article  CAS  PubMed  Google Scholar 

  52. Iwata, N. et al. No association with the neuregulin 1 haplotype to Japanese schizophrenia. Mol. Psychiatry 9, 126–127 (2004).

    Article  CAS  PubMed  Google Scholar 

  53. Hashimoto, R. et al. Expression analysis of neuregulin-1 in the dorsolateral prefrontal cortex in schizophrenia. Mol. Psychiatry 21, 21 (2003).

    Google Scholar 

  54. Arnold, S.E. & Trojanowski, J.Q. Recent advances in defining the neuropathology of schizophrenia. Acta Neuropathol. (Berl) 92, 217–231 (1996).

    Article  CAS  Google Scholar 

  55. Harrison, P.J. The neuropathology of schizophrenia. A critical review of the data and their interpretation. Brain 122, 593–624 (1999).

    Article  PubMed  Google Scholar 

  56. Blum, B.P. & Mann, J.J. The GABAergic system in schizophrenia. Int. J. Neuropsychopharmacol. 5, 159–179 (2002).

    Article  CAS  PubMed  Google Scholar 

  57. Konradi, C. & Heckers, S. Molecular aspects of glutamate dysregulation: implications for schizophrenia and its treatment. Pharmacol. Ther. 97, 153–179 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Benes, F.M. & Berretta, S. GABAergic interneurons: implications for understanding schizophrenia and bipolar disorder. Neuropsychopharmacology 25, 1–27 (2001).

    Article  CAS  PubMed  Google Scholar 

  59. Bartzokis, G. Schizophrenia: breakdown in the well-regulated lifelong process of brain development and maturation. Neuropsychopharmacology 27, 672–683 (2002).

    Article  PubMed  Google Scholar 

  60. Davis, K.L. et al. White matter changes in schizophrenia: evidence for myelin-related dysfunction. Arch. Gen. Psychiatry 60, 443–456 (2003).

    Article  PubMed  Google Scholar 

  61. Pongrac, J., Middleton, F.A., Lewis, D.A., Levitt, P. & Mirnics, K. Gene expression profiling with DNA microarrays: advancing our understanding of psychiatric disorders. Neurochem. Res. 27, 1049–1063 (2002).

    Article  CAS  PubMed  Google Scholar 

  62. Moises, H.W., Zoega, T. & Gottesman, II. The glial growth factors deficiency and synaptic destabilization hypothesis of schizophrenia. BMC Psychiatry 2, 8 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Hakola, H.P. Neuropsychiatric and genetic aspects of a new hereditary disease characterized by progressive dementia and lipomembranous polycystic osteodysplasia. Acta Psychiatr. Scand. Suppl. 232, 1–173 (1972).

    CAS  PubMed  Google Scholar 

  64. Friston, K.J. & Frith, C.D. Schizophrenia: a disconnection syndrome? Clin. Neurosci. 3, 89–97 (1995).

    CAS  PubMed  Google Scholar 

  65. Cannon, T.D. et al. Regional gray matter, white matter, and cerebrospinal fluid distributions in schizophrenic patients, their siblings, and controls. Arch. Gen. Psychiatry 55, 1084–1091 (1998).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Supported by the National Institute of Neurological Disorders and Stroke (R01 NS35884 to G.C.) and a Conte Center Grant (National Institute of Mental Health P50 MH066392 to J.D.B.). We thank J.N. Hirschhorn for help with meta-analysis of the genetic data and A. Rosenbaum for help with the illustration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriel Corfas.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Corfas, G., Roy, K. & Buxbaum, J. Neuregulin 1-erbB signaling and the molecular/cellular basis of schizophrenia. Nat Neurosci 7, 575–580 (2004). https://doi.org/10.1038/nn1258

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1258

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing