Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Perceptual learning and top-down influences in primary visual cortex

Abstract

Neuronal responses at early stages in visual cortical processing, including those in primary visual cortex (V1), are subject to the influences of visual context, experience and attention. Here we show that for monkeys trained in a shape discrimination task, V1 neurons took on novel functional properties related to the attributes of the trained shapes. Furthermore, these properties depended on the perceptual task being performed; neurons responded very differently to an identical visual stimulus under different visual discrimination tasks. These top-down influences were seen from the very beginning and throughout the entire time course of the neural responses. Information theoretic analysis showed that neurons carried more information about a stimulus attribute when the animals were performing a task related to that attribute. Our findings suggest that the output from V1 reflects both sensory and behavioral context.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Stimulus and behavior paradigms.
Figure 2: Task modulation of side-flank offset tuning.
Figure 3: Task modulation of end-flank offset tuning.
Figure 4: Population analysis of the task-related effect (n = 51).
Figure 5: Effects of spatial attention.
Figure 6: The color change had no significant effect on flank offset tuning function.
Figure 7: Population analysis of the timing of task-related effect.

References

  1. McKee, S.P. & Westheimer, G. Improvement in vernier acuity with practice. Percept. Psychophys. 24, 258–262 (1978).

    Article  CAS  Google Scholar 

  2. Poggio, T., Fahle, M. & Edelman, S. Fast perceptual learning in visual hyperacuity. Science 256, 1018–1021 (1992).

    Article  CAS  Google Scholar 

  3. Saarinen, J. & Levi, D.M. Perceptual learning in vernier acuity: what is learned? Vision Res. 35, 519–527 (1995).

    Article  CAS  Google Scholar 

  4. Crist, R.E., Kapadia, M.K., Westheimer, G. & Gilbert, C.D. Perceptual learning of spatial localization: specificity for orientation, position, and context. J. Neurophysiol. 78, 2889–2894 (1997).

    Article  CAS  Google Scholar 

  5. Vogels, R. & Orban, G.A. The effect of practice on the oblique effect in line orientation judgments. Vision Res. 25, 1679–1687 (1985).

    Article  CAS  Google Scholar 

  6. Shiu, L.P. & Pashler, H. Improvement in line orientation discrimination is retinally local but dependent on cognitive set. Percept. Psychophys. 52, 582–588 (1992).

    Article  CAS  Google Scholar 

  7. Ball, K. & Sekuler, R. A specific and enduring improvement in visual motion discrimination. Science 218, 697–698 (1982).

    Article  CAS  Google Scholar 

  8. Fiorentini, A. & Berardi, N. Perceptual learning specific for orientation and spatial frequency. Nature 287, 43–44 (1980).

    Article  CAS  Google Scholar 

  9. Karni, A. & Sagi, D. Where practice makes perfect in texture discrimination: evidence for primary visual cortex plasticity. Proc. Natl. Acad. Sci. USA 88, 4966–4970 (1991).

    Article  CAS  Google Scholar 

  10. Ramachandran, V.S. & Braddick, O. Orientation-specific learning in stereopsis. Perception 2, 371–376 (1973).

    Article  CAS  Google Scholar 

  11. Fendick, M. & Westheimer, G. Effects of practice and the separation of test targets on foveal and peripheral stereoacuity. Vision Res. 23, 145–150 (1983).

    Article  CAS  Google Scholar 

  12. Gilbert, C.D. Adult cortical dynamics. Physiol. Rev. 78, 467–485 (1998).

    Article  CAS  Google Scholar 

  13. Weinberger, N.M. & Bakin, J.S. Learning-induced physiological memory in adult primary auditory cortex: receptive fields plasticity, model, and mechanisms. Audiol. Neuro-Otol. 3, 145–167 (1998).

    Article  CAS  Google Scholar 

  14. Recanzone, G.H., Merzenich, M.M., Jenkins, W.M., Grajski, K.A. & Dinse, H.R. Topographic reorganization of the hand representation in cortical area 3b owl monkeys trained in a frequency-discrimination task. J. Neurophysiol. 67, 1031–1056 (1992).

    Article  CAS  Google Scholar 

  15. Recanzone, G.H., Schreiner, C.E. & Merzenich, M.M. Plasticity in the frequency representation of primary auditory cortex following discrimination training in adult owl monkeys. J. Neurosci. 13, 87–103 (1993).

    Article  CAS  Google Scholar 

  16. Crist, R.E., Li, W. & Gilbert, C.D. Learning to see: experience and attention in primary visual cortex. Nat. Neurosci. 4, 519–525 (2001).

    Article  CAS  Google Scholar 

  17. Ghose, G.M., Yang, T. & Maunsell, J.H. Physiological correlates of perceptual learning in monkey V1 and V2. J. Neurophysiol. 87, 1867–1888 (2002).

    Article  Google Scholar 

  18. Schoups, A., Vogels, R., Qian, N. & Orban, G. Practising orientation identification improves orientation coding in V1 neurons. Nature 412, 549–553 (2001).

    Article  CAS  Google Scholar 

  19. Blakemore, C. & Tobin, E.A. Lateral inhibition between orientation detectors in the cat's visual cortex. Exp. Brain Res. 15, 439–440 (1972).

    Article  CAS  Google Scholar 

  20. DeAngelis, G.C., Freeman, R.D. & Ohzawa, I. Length and width tuning of neurons in the cat's primary visual cortex. J. Neurophysiol. 71, 347–374 (1994).

    Article  CAS  Google Scholar 

  21. Gilbert, C.D. & Wiesel, T.N. The influence of contextual stimuli on the orientation selectivity of cells in primary visual cortex of the cat. Vision Res. 30, 1689–1701 (1990).

    Article  CAS  Google Scholar 

  22. Kapadia, M.K., Ito, M., Gilbert, C.D. & Westheimer, G. Improvement in visual sensitivity by changes in local context: parallel studies in human observers and in V1 of alert monkeys. Neuron 15, 843–856 (1995).

    Article  CAS  Google Scholar 

  23. Knierim, J.J. & Van Essen, D.C. Neuronal responses to static texture patterns in area V1 of the alert macaque monkey. J. Neurophysiol. 67, 961–980 (1992).

    Article  CAS  Google Scholar 

  24. Lamme, V.A. The neurophysiology of figure-ground segregation in primary visual cortex. J. Neurosci. 15, 1605–1615 (1995).

    Article  CAS  Google Scholar 

  25. Li, C.Y. & Li, W. Extensive integration field beyond the classical receptive field of cat's striate cortical neurons—classification and tuning properties. Vision Res. 34, 2337–2355 (1994).

    Article  CAS  Google Scholar 

  26. Li, W., Thier, P. & Wehrhahn, C. Contextual influence on orientation discrimination of humans and responses of neurons in V1 of alert monkeys. J. Neurophysiol. 83, 941–954 (2000).

    Article  CAS  Google Scholar 

  27. Maffei, L. & Fiorentini, A. The unresponsive regions of visual cortical receptive fields. Vision Res. 16, 1131–1139 (1976).

    Article  CAS  Google Scholar 

  28. Nelson, J.I. & Frost, B.J. Orientation-selective inhibition from beyond the classic visual receptive field. Brain Res. 139, 359–365 (1978).

    Article  CAS  Google Scholar 

  29. Rossi, A.F., Rittenhouse, C.D. & Paradiso, M.A. The representation of brightness in primary visual cortex. Science 273, 1104–1107 (1996).

    Article  CAS  Google Scholar 

  30. Haenny, P.E. & Schiller, P.H. State dependent activity in monkey visual cortex. I. Single cell activity in V1 and V4 on visual tasks. Exp. Brain Res. 69, 225–244 (1988).

    Article  CAS  Google Scholar 

  31. Motter, B.C. Focal attention produces spatially selective processing in visual cortical areas V1, V2, and V4 in the presence of competing stimuli. J. Neurophysiol. 70, 909–919 (1993).

    Article  CAS  Google Scholar 

  32. Roelfsema, P.R., Lamme, V.A. & Spekreijse, H. Object-based attention in the primary visual cortex of the macaque monkey. Nature 395, 376–381 (1998).

    Article  CAS  Google Scholar 

  33. Ito, M. & Gilbert, C.D. Attention modulates contextual influences in the primary visual cortex of alert monkeys. Neuron 22, 593–604 (1999).

    Article  CAS  Google Scholar 

  34. Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423 (1948).

    Article  Google Scholar 

  35. Poggio, G.F. Mechanisms of stereopsis in monkey visual cortex. Cereb. Cortex 5, 193–204 (1995).

    Article  CAS  Google Scholar 

  36. Desimone, R. & Duncan, J. Neural mechanisms of selective visual attention. Annu. Rev. Neurosci. 18, 193–222 (1995).

    Article  CAS  Google Scholar 

  37. Kastner, S. & Ungerleider, L.G. Mechanisms of visual attention in the human cortex. Annu. Rev. Neurosci. 23, 315–341 (2000).

    Article  CAS  Google Scholar 

  38. Treue, S. Neural correlates of attention in primate visual cortex. Trends Neurosci. 24, 295–300 (2001).

    Article  CAS  Google Scholar 

  39. McAdams, C.J. & Maunsell, J.H. Effects of attention on orientation-tuning functions of single neurons in macaque cortical area V4. J. Neurosci. 19, 431–441 (1999).

    Article  CAS  Google Scholar 

  40. Treue, S. & Martinez, T.J. Feature-based attention influences motion processing gain in macaque visual cortex. Nature 399, 575–579 (1999).

    Article  CAS  Google Scholar 

  41. Sigman, M. & Gilbert, C.D. Learning to find a shape. Nat. Neurosci. 3, 264–269 (2000).

    Article  CAS  Google Scholar 

  42. Finney, D.J. Probit Analysis: A Statistical Treatment of the Sigmoid Response Curve (Cambridge University Press, Cambridge, 1952).

    Google Scholar 

  43. Panzeri, S. & Treves, A. Analytical estimates of limited sampling biases in different information measures. Comput.. Neural. Syst. 7, 87–107 (1996).

    Google Scholar 

Download references

Acknowledgements

This work was supported by US National Institutes of Health grant EY07968. We are grateful to K. Matsuda for generously sharing the eye tracking software and G. Reeke for valuable comments on the data analysis with information theory. We also thank J. Jones, K. Hazleton and N. Lingenhol for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles D Gilbert.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Li, W., Piëch, V. & Gilbert, C. Perceptual learning and top-down influences in primary visual cortex. Nat Neurosci 7, 651–657 (2004). https://doi.org/10.1038/nn1255

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1255

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing