Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Induction of PGE2 by estradiol mediates developmental masculinization of sex behavior


Adult male sexual behavior in mammals requires the neuronal organizing effects of gonadal steroids during a sensitive perinatal period. During development, estradiol differentiates the rat preoptic area (POA), an essential brain region in the male copulatory circuit. Here we report that increases in prostaglandin-E2 (PGE2), resulting from changes in cyclooxygenase-2 (COX-2) regulation induced by perinatal exposure to estradiol, are necessary and sufficient to organize the crucial neural substrate that mediates male sexual behavior. Briefly preventing prostaglandin synthesis in newborn males with the COX inhibitor indomethacin permanently downregulates markers of dendritic spines in the POA and severely impairs male sexual behavior. Developmental exposure to the COX inhibitor aspirin results in mild impairment of sexual behavior. Conversely, administration of PGE2 to newborn females masculinizes the POA and leads to male sex behavior in adults, thereby highlighting the pathway of steroid-independent brain masculinization. Our findings show that PGE2 functions as a downstream effector of estradiol to permanently masculinize the brain.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Early exposure to PGE2 determines adult sex behavior.
Figure 2: Neonatal administration of PGE2 or indomethacin alters spinophilin content in the developing and adult POA.
Figure 3: Estradiol and PGE2 increase dendritic spine density in the developing POA.
Figure 4: Estradiol upregulates COX-2 mRNA and protein in the developing POA.
Figure 5: Early exposure to aspirin impairs adult male copulatory behavior.


  1. 1

    Ryner, L.C. et al. Control of male sexual behavior and sexual orientation in Drosophila by the fruitless gene. Cell 87, 1079–1089 (1996).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  2. 2

    Emmons, S.W. & Lipton, J. Genetic basis of male sexual behavior. J. Neurobiol. 54, 93–110 (2003).

    CAS  Article  Google Scholar 

  3. 3

    Weisz, J. & Ward, I.L. Plasma testosterone and progesterone titers of pregnant rats, their male and female fetuses, and neonatal offspring. Endocrinology 106, 306–316 (1980).

    CAS  Article  Google Scholar 

  4. 4

    De Vries, G. & Simerly, R. Anatomy, development, and function of sexually dimorphic neural circuits in the mammalian brain. in Hormones, Brain and Behavior (eds. Pfaff, D., Arnold, A., Etgen, A., Fahrbach, S. & Rubin, R.) 137–192 (Academic, San Diego, CA, 2002).

    Chapter  Google Scholar 

  5. 5

    Simerly, R.B. Wired for reproduction: organization and development of sexually dimorphic circuits in the mammalian forebrain. Annu. Rev. Neurosci. 25, 507–536 (2002).

    CAS  Article  Google Scholar 

  6. 6

    Christensen, L.W., Nance, D.M. & Gorski, R.A. Effects of hypothalamic and preoptic lesions on reproductive behavior in male rats. Brain Res. Bull. 2, 137–141 (1977).

    CAS  Article  Google Scholar 

  7. 7

    Gorski, R.A., Harlan, R.E., Jacobson, C.D., Shryne, J.E. & Southam, A.M. Evidence for the existence of a sexually dimorphic nucleus in the preoptic area of the rat. J. Comp. Neurol. 193, 529–539 (1980).

    CAS  Article  Google Scholar 

  8. 8

    Davis, E.C., Popper, P. & Gorski, R.A. The role of apoptosis in sexual differentiation of the rat sexually dimorphic nucleus of the preoptic area. Brain Res. 734, 10–18 (1996).

    CAS  Article  Google Scholar 

  9. 9

    Pfaff, D.W. Morphological changes in the brains of adult male rats after neonatal castration. J. Endocrinol. 36, 415–416 (1966).

    CAS  Article  Google Scholar 

  10. 10

    Raisman, G. & Field, P.M. Sexual dimorphism in the preoptic area of the rat. Science 173, 731–733 (1971).

    CAS  Article  Google Scholar 

  11. 11

    Larriva-Sahd, J. Ultrastructural evidence of a sexual dimorphism in the neuropil of the medial preoptic nucleus of the rat: a quantitative study. Neuroendocrinology 54, 416–419 (1991).

    CAS  Article  Google Scholar 

  12. 12

    Perez, J., Naftolin, F. & Garcia Segura, L.M. Sexual differentiation of synaptic connectivity and neuronal plasma membrane in the arcuate nucleus of the rat hypothalamus. Brain Res. 527, 116–122 (1990).

    CAS  Article  Google Scholar 

  13. 13

    Woolley, C.S. & McEwen, B.S. Estradiol mediates fluctuation in hippocampal synapse density during the estrous cycle in the adult rat. J. Neurosci. 12, 2549–3554 (1992).

    CAS  Article  Google Scholar 

  14. 14

    Calizo, L.H. & Flanagan-Cato, L.M. Estrogen selectively regulates spine density within the dendritic arbor of rat ventromedial hypothalamic neurons. J. Neurosci. 20, 1589–1596 (2000).

    CAS  Article  Google Scholar 

  15. 15

    Mong, J.A., Roberts, R.C., Kelly, J.J. & McCarthy, M.M. Gonadal steroids reduce the density of axospinous synapses in the developing rat arcuate nucleus: an electron microscopy analysis. J. Comp. Neurol. 432, 259–267 (2001).

    CAS  Article  Google Scholar 

  16. 16

    Amateau, S.K. & McCarthy, M.M. A novel mechanism of dendritic spine plasticity involving estradiol induction of prostaglandin-E2 . J. Neurosci. 22, 8586–8596 (2002).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  17. 17

    Feng, J. et al. Spinophilin regulates the formation and function of dendritic spines. Proc. Natl. Acad. Sci. USA 97, 9287–9292 (2000).

    CAS  Article  Google Scholar 

  18. 18

    Stephens, D.J. & Banting, G. In vivo dynamics of the F-actin-binding protein neurabin-II. Biochem. J. 345, 185–194 (2000).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. 19

    Goldin, M., Segal, M. & Avignone, E. Functional plasticity triggers formation and pruning of dendritic spines in cultured hippocampal networks. J. Neurosci. 21, 186–193 (2001).

    CAS  Article  Google Scholar 

  20. 20

    Herrmann, K. Differential distribution of AMPA receptors and glutamate during pre- and postnatal development in the visual cortex of ferrets. J. Comp. Neurol. 375, 1–17 (1996).

    CAS  Article  Google Scholar 

  21. 21

    Green, G.A. Understanding NSAIDs: from aspirin to COX-2. Clin. Cornerstone 3, 5–60 (2001).

    Article  Google Scholar 

  22. 22

    Pfaus, J.G. et al. Sexual behavior enhances central dopamine transmission in the male rat. Brain Res. 530, 345–348 (1990).

    CAS  Article  Google Scholar 

  23. 23

    Dewsbury, D.A. Copulatory behaviour of rats (Rattus norvegicus) as a function of prior copulatory experience. Anim. Behav. 17, 217–223 (1969).

    CAS  Article  Google Scholar 

  24. 24

    Murphy, A.Z. & Hoffman, G.E. Distribution of gonadal steroid receptor-containing neurons in the preoptic-periaqueductal gray-brainstem pathway: a potential circuit for the initiation of male sexual behavior. J. Comp. Neurol. 438, 191–212 (2001).

    CAS  Article  Google Scholar 

  25. 25

    Truitt, W.A. & Coolen, L.M. Identification of a potential ejaculation generator in the spinal cord. Science 297, 1566–1569 (2002).

    CAS  Article  Google Scholar 

  26. 26

    Powell, W.S., Dominguez, J.M. & Hull, E.M. An NMDA antagonist impairs copulation and the experience-induced enhancement of male sexual behavior in the rat. Behav. Neurosci. 117, 69–75 (2003).

    CAS  Article  Google Scholar 

  27. 27

    Forger, N.G., Wagner, C.K., Contois, M., Bengston, L. & MacLennan, A.J. Ciliary neurotrophic factor receptor α in spinal motoneurons is regulated by gonadal hormones. J. Neurosci. 18, 8720–8729 (1998).

    CAS  Article  Google Scholar 

  28. 28

    Gorski, R.A., Gordon, J.H., Shryne, J.E. & Southam, A.M. Evidence for a morphological sex difference within the medial preoptic area of the rat brain. Brain Res. 148, 333–346 (1978).

    CAS  Article  Google Scholar 

  29. 29

    Meisel, R.L. & Sachs, B.D. The physiology of male sexual behavior. in The Physiology of Reproduction (eds. Knobil, E. & Neill, J.D.) 3–107 (Raven, New York, NY, 1994).

    Google Scholar 

  30. 30

    Baum, M. Neuroendocrinology of sexual behavior in the male. in Behavioral Endocrinolgy (eds. Becker, J., Breedlove, S.M., Crews, D. & McCarthy, M.) 153–203 (MIT Press, Cambridge, MA, 2002).

    Google Scholar 

  31. 31

    Beach, F.A. & Holz, A.M. Mating behavior in male rats castrated at various ages and injected with androgen. J. Exp. Zool. 101, 91–142 (1946).

    CAS  Article  Google Scholar 

  32. 32

    Davis, A.M., Grattan, D.R. & McCarthy, M.M. Decreasing GAD neonatally attenuates steroid-induced sexual differentiation of the rat brain. Behav. Neurosci. 114, 923–933 (2000).

    CAS  Article  Google Scholar 

  33. 33

    Feng, P., Ma, Y. & Vogel, G.W. The critical window of brain development from susceptive to insusceptive. Effects of clomipramine neonatal treatment on sexual behavior. Brain Res. Dev. Brain Res. 129, 107–110 (2001).

    CAS  Article  Google Scholar 

  34. 34

    Auger, A.P. et al. Expression of the nuclear receptor coactivator, cAMP response element-binding protein, is sexually dimorphic and modulates sexual differentiation of neonatal rat brain. Endocrinology 143, 3009–3016 (2002).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  35. 35

    Hull, E., Meisel, R. & Sachs, D. Male sexual behavior. in Hormones, Brain, and Behavior (ed. Pfaff, D.W.) 3–137 (Academic, San Diego, CA, 2002).

    Chapter  Google Scholar 

  36. 36

    Houtsmuller, E.J. et al. SDN-POA volume, sexual behavior, and partner preference of male rats affected by perinatal treatment with ATD. Physiol. Behav. 56, 535–541 (1994).

    CAS  Article  Google Scholar 

  37. 37

    Roselli, C.E., Cross, E., Poonyagariyagorn, H.K. & Stadelman, H.L. Role of aromatization in anticipatory and consummatory aspects of sexual behavior in male rats. Horm. Behav. 44, 146–151 (2003).

    CAS  Article  Google Scholar 

  38. 38

    George, F.W. & Ojeda, S.R. Changes in aromatase activity in the rat brain during embryonic, neonatal, and infantile development. Endocrinology 111, 522–529 (1982).

    CAS  Article  Google Scholar 

  39. 39

    Shughrue, P.J., Lane, M.V. & Merchenthaler, I. Comparative distribution of estrogen receptor-α and -β mRNA in the rat central nervous system. J. Comp. Neurol. 388, 507–525 (1997).

    CAS  Article  Google Scholar 

  40. 40

    Breder, C.D., Dewitt, D. & Kraig, R.P. Characterization of inducible cyclooxygenase in rat brain. J. Comp. Neurol. 355, 296–315 (1995).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  41. 41

    Sorra, K.E. & Harris, K.M. Overview on the structure, composition, function, development, and plasticity of hippocampal dendritic spines. Hippocampus 10, 501–511 (2000).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  42. 42

    Phoenix, C.H., Goy, R.W., Gerall, A.A. & Young, W.C. Organizing action of prenatally administered testosterone propionate in the tissues mediating mating and behavior in the female guinea pig. Endocrinology 65, 369–382 (1959).

    CAS  Article  Google Scholar 

  43. 43

    Malenka, R.C. The role of postsynaptic calcium in the induction of long-term potentiation. Mol. Neurobiol. 5, 289–295 (1991).

    CAS  Article  Google Scholar 

  44. 44

    Levy, G. Clinical pharmacokinetics of aspirin. Pediatrics 62, 867–872 (1978).

    CAS  Google Scholar 

  45. 45

    Helleberg, L. Clinical pharmacokinetics of indomethacin. Clin. Pharmacokinet. 6, 245–258 (1981).

    CAS  Article  Google Scholar 

  46. 46

    Glaser, E.M. & Van der Loos, H. Analysis of thick brain sections by obverse-reverse computer microscopy: application of a new, high clarity Golgi-Nissl stain. J. Neurosci. Methods 4, 117–125 (1981).

    CAS  Article  Google Scholar 

  47. 47

    Mong, J.A., Glaser, E. & McCarthy, M.M. Gonadal steroids promote glial differentiation and alter neuronal morphology in the developing hypothalamus in a regionally specific manner. J. Neurosci. 19, 1464–1472 (1999).

    CAS  Article  Google Scholar 

  48. 48

    Harris, K.M., Jensen, F.E. & Tsao, B. Three-dimensional structure of dendritic spines and synapses in rat hippocampus (CA1) at postnatal day 15 and adult ages: implications for the maturation of synaptic physiology and long-term potentiation. J. Neurosci. 12, 2685–2705 (1992).

    CAS  Article  Google Scholar 

  49. 49

    McMullen, N.T. & Almli, C.R. Cell types within the medial forebrain bundle: a Golgi study of preoptic and hypothalamic neurons in the rat. Am. J. Anat. 161, 323–340 (1981).

    CAS  Article  Google Scholar 

  50. 50

    Amateau, S.K., Alt, J.J., Stamps, C.L. & McCarthy, M.M. Brain estradiol content in newborn rats: sex differences, regional heterogeneity and possible de novo synthesis by the female telencephalon. Endocrinology 145, 2906–2917 (2004).

    CAS  Article  Google Scholar 

Download references


We thank J.J. Alt for assistance with culture preparation and Golgi-Cox impregnation; J.M. Jones for the quantitative real-time PCR experiment; J.A. Mong for technical guidance in the Golgi experiment; and G.F. Ball, A.Z. Murphy and B.J. Todd for comments on the manuscript. This work was supported by a predoctoral National Research Service Award to S.K.A. (MH12862); a grant from the National Institutes of Mental Health to M.M.M. (MH52716); and by the National Institute of Child Health and Human Development (NICHD) and NIH through cooperative agreement (U54 HD28934) as part of the Specialized Cooperative Centers Program in Reproductive Research.

Author information



Corresponding author

Correspondence to Stuart K Amateau.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Amateau, S., McCarthy, M. Induction of PGE2 by estradiol mediates developmental masculinization of sex behavior. Nat Neurosci 7, 643–650 (2004).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing