Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A sensory signature that distinguishes true from false memories

Abstract

Human behavioral studies show that there is greater sensory/perceptual detail associated with true memories than false memories. We therefore hypothesized that true recognition of abstract shapes would elicit greater visual cortical activation than would false recognition. During functional magnetic resonance imaging (fMRI), participants studied exemplar shapes and later made recognition memory decisions (“old” or “new”) concerning studied exemplars (old shapes), nonstudied lures (related shapes) and new shapes. Within visual processing regions, direct contrasts between true recognition (“old” response to an old shape; old-hit) and false recognition (“old” response to a related shape; related-false alarm) revealed preferential true recognition–related activity in early visual processing regions (Brodmann area (BA)17, BA18). By comparison, both true and false recognition were associated with activity in early and late (BA19, BA37) visual processing regions, the late regions potentially supporting “old” responses, independent of accuracy. Further analyses suggested that the differential early visual processing activity reflected repetition priming, a type of implicit memory. Thus, the sensory signature that distinguishes true from false recognition may not be accessible to conscious awareness.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Depiction of experimental protocol (see Methods for details).
Figure 2: Neural regions differentially associated with true recognition (old-hits > related-false alarms) and false recognition (related-false alarms > old-hits).
Figure 3: Ventral brain regions commonly (magenta) and differentially (red) associated with old-hits and old-misses.
Figure 4: Neural regions associated with both true recognition (old-hits > new-correct rejections) and false recognition (related-false alarms > new-correct rejections).
Figure 5: Hippocampal activity associated with true and false recognition.

References

  1. 1

    Schacter, D.L. The seven sins of memory. Insights from psychology and cognitive neuroscience. Am. Psychol. 54, 182–203 (1999).

    CAS  Article  Google Scholar 

  2. 2

    Roediger, H.L. Memory illusions. J. Mem. Lang. 35, 76–100 (1996).

    Article  Google Scholar 

  3. 3

    Bartlett, F.C. Remembering: A Study in Experimental and Social Psychology (Cambridge Univ. Press, London, 1932).

    Google Scholar 

  4. 4

    Underwood, B.J. False recognition produced by implicit verbal responses. J. Exp. Psychol. 70, 122–129 (1965).

    CAS  Article  Google Scholar 

  5. 5

    Roediger, H.L. & McDermott, K.B. Creating false memories: remembering words not presented in lists. J. Exp. Psychol. Learn. Mem. Cogn. 21, 803–814 (1995).

    Article  Google Scholar 

  6. 6

    Deese, J. On the prediction of occurrence of particular verbal intrusions in immediate recall. J. Exp. Psychol. 58, 17–22 (1959).

    CAS  Article  Google Scholar 

  7. 7

    Koutstaal, W., Schacter, D.L., Verfaellie, M., Brenner, C. & Jackson, E.M. Perceptually based false recognition of novel objects in amnesia: effects of category size and similarity to category prototypes. Cogn. Neuropsychol. 16, 317–341 (1999).

    Article  Google Scholar 

  8. 8

    Schooler, J.W., Gerhard, D. & Loftus, E.F. Qualities of the unreal. J. Exp. Psychol. Learn. Mem. Cogn. 12, 171–181 (1986).

    CAS  Article  Google Scholar 

  9. 9

    Mather, M., Henkel, L.A. & Johnson, M.K. Evaluating characteristics of false memories: remember/know judgments and memory characteristics questionnaire compared. Mem. Cogn. 25, 826–837 (1997).

    CAS  Article  Google Scholar 

  10. 10

    Norman, K.A. & Schacter, D.L. False recognition in younger and older adults: exploring the characteristics of illusory memories. Mem. Cogn. 25, 838–848 (1997).

    CAS  Article  Google Scholar 

  11. 11

    Schacter, D.L. et al. Neuroanatomical correlates of veridical and illusory recognition memory: evidence from positron emission tomography. Neuron 17, 267–274 (1996).

    CAS  Article  Google Scholar 

  12. 12

    Schacter, D.L., Buckner, R.L., Koutstaal, W., Dale, A.M. & Rosen, B.R. Late onset of anterior prefrontal activity during true and false recognition: an event-related fMRI study. Neuroimage 6, 259–269 (1997).

    CAS  Article  Google Scholar 

  13. 13

    Cabeza, R., Rao, S.M., Wagner, A.D., Mayer, A.R. & Schacter, D.L. Can medial temporal lobe regions distinguish true from false? An event-related functional MRI study of veridical and illusory recognition memory. Proc. Natl. Acad. Sci. USA 98, 4805–4810 (2001).

    CAS  Article  Google Scholar 

  14. 14

    Buckner, R.L., Koutstaal, W., Schacter, D.L., Wagner, A.D. & Rosen, B.R. Functional-anatomic study of episodic retrieval using fMRI. Neuroimage 7, 151–162 (1998).

    CAS  Article  Google Scholar 

  15. 15

    Lepage, M., Ghaffar, O., Nyberg, L. & Tulving, E. Prefrontal cortex and episodic memory retrieval mode. Proc. Natl. Acad. Sci. USA 97, 506–511 (2000).

    CAS  Article  Google Scholar 

  16. 16

    Slotnick, S.D., Moo, L.R., Segal, J.B. & Hart, J. Distinct prefrontal cortex activity associated with item memory and source memory for visual shapes. Cogn. Brain Res. 17, 75–82 (2003).

    Article  Google Scholar 

  17. 17

    Wheeler, M.E. & Buckner, R.L. Functional dissociation among components of remembering: control, perceived oldness, and content. J. Neurosci. 23, 3869–3880 (2003).

    CAS  Article  Google Scholar 

  18. 18

    Bar, M. & Aminoff, E. Cortical analysis of visual context. Neuron 38, 347–358 (2003).

    CAS  Article  Google Scholar 

  19. 19

    Nyberg, L. et al. Reactivation of motor brain areas during explicit memory for actions. Neuroimage 14, 521–528 (2001).

    CAS  Article  Google Scholar 

  20. 20

    Nyberg, L., Habib, R., McIntosh, A.R. & Tulving, E. Reactivation of encoding-related brain activity during memory retrieval. Proc. Natl. Acad. Sci. USA 97, 11120–11124 (2000).

    CAS  Article  Google Scholar 

  21. 21

    Wheeler, M.E., Petersen, S.E. & Buckner, R.L. Memory's echo: vivid remembering reactivates sensory-specific cortex. Proc. Natl. Acad. Sci. USA 97, 11125–11129 (2000).

    CAS  Article  Google Scholar 

  22. 22

    Vaidya, C.J., Zhao, M., Desmond, J.E. & Gabrieli, J.D.E. Evidence for cortical encoding specificity in episodic memory: memory-induced re-activation of picture processing areas. Neuropsychologia 40, 2136–2143 (2002).

    Article  Google Scholar 

  23. 23

    Wheeler, M.E. & Buckner, R.L. Functional-anatomic correlates of remembering and knowing. Neuroimage 21, 1337–1349 (2004).

    Article  Google Scholar 

  24. 24

    Tulving, E. & Schacter, D.L. Priming and human memory systems. Science 247, 301–306 (1990).

    CAS  Article  Google Scholar 

  25. 25

    Rugg, M.D. et al. Dissociation of the neural correlates of implicit and explicit memory. Nature 392, 595–598 (1998).

    CAS  Article  Google Scholar 

  26. 26

    Henson, R.N.A., Shallice, T., Gorno-Tempini, M.L. & Dolan, R.J. Face repetition effects in implicit and explicit memory tests as measured by fMRI. Cereb. Cortex 12, 178–186 (2002).

    CAS  Article  Google Scholar 

  27. 27

    Tulving, E., Kapur, S., Craik, F.I.M., Moscovitch, M. & Houle, S. Hemispheric encoding/retrieval asymmetry in episodic memory: positron emission tomography findings. Proc. Natl. Acad. Sci. USA 91, 2016–2020 (1994).

    CAS  Article  Google Scholar 

  28. 28

    Buckner, R.L. Beyond HERA: contributions of specific prefrontal brain areas to long-term memory retrieval. Psychon. Bull. Rev. 3, 149–158 (1996).

    CAS  Article  Google Scholar 

  29. 29

    Wagner, A.D., Maril, A., Bjork, R.A. & Schacter, D.L. Prefrontal contributions to executive control: fMRI evidence for functional distinctions within lateral prefrontal cortex. Neuroimage 14, 1337–1347 (2001).

    CAS  Article  Google Scholar 

  30. 30

    Haxby, J.V. et al. Face encoding and recognition in the human brain. Proc. Natl. Acad. Sci. USA 93, 922–927 (1996).

    CAS  Article  Google Scholar 

  31. 31

    Henson, R.N.A., Rugg, M.D., Shallice, T. & Dolan, R.J. Confidence in recognition memory for words: dissociating right prefrontal roles in episodic retrieval. J. Cogn. Neurosci. 12, 913–923 (2000).

    CAS  Article  Google Scholar 

  32. 32

    Donaldson, D.I., Petersen, S.E. & Buckner, R.L. Dissociating memory retrieval processes using fMRI: evidence that priming does not support recognition memory. Neuron 31, 1047–1059 (2001).

    CAS  Article  Google Scholar 

  33. 33

    Rugg, M.D., Henson, R.N.A. & Robb, W.G.K. Neural correlates of retrieval processing in the prefrontal cortex during recognition and exclusion tasks. Neuropsychologia 41, 40–52 (2003).

    Article  Google Scholar 

  34. 34

    Velanova, K. et al. Functional-anatomic correlates of sustained and transient processing components engaged during controlled retrieval. J. Neurosci. 23, 8460–8470 (2003).

    CAS  Article  Google Scholar 

  35. 35

    Buckner, R.L., Raichle, M.E., Miezin, F.M. & Petersen, S.E. Functional anatomic studies of memory retrieval for auditory words. J. Neurosci. 16, 6219–6235 (1996).

    CAS  Article  Google Scholar 

  36. 36

    Konishi, S., Wheeler, M.E., Donaldson, D.I. & Buckner, R.L. Neural correlates of episodic retrieval success. Neuroimage 12, 276–286 (2000).

    CAS  Article  Google Scholar 

  37. 37

    Price, C.J. The anatomy of language: contributions from functional neuroimaging. J. Anat. 197, 335–359 (2000).

    Article  PubMed Central  Google Scholar 

  38. 38

    Walla, P., Endl, W., Lindinger, G., Deecke, L. & Lang, W. Implicit memory within a word recognition task: an event-related potential study in human subjects. Neurosci. Lett. 269, 129–132 (1999).

    CAS  Article  Google Scholar 

  39. 39

    Buckner, R.L. et al. Functional anatomic studies of explicit and implicit memory retrieval tasks. J. Neurosci. 15, 12–29 (1995).

    CAS  Article  Google Scholar 

  40. 40

    Buckner, R.L. et al. Functional-anatomic correlates of object priming in humans revealed by rapid presentation event-related fMRI. Neuron 20, 285–296 (1998).

    CAS  Article  Google Scholar 

  41. 41

    Squire, L.R. et al. Activation of the hippocampus in normal humans: a functional anatomical study of memory. Proc. Natl. Acad. Sci. USA 89, 1837–1841 (1992).

    CAS  Article  Google Scholar 

  42. 42

    Schacter, D.L. & Buckner, R.L. Priming and the brain. Neuron 20, 185–195 (1998).

    CAS  Article  Google Scholar 

  43. 43

    Wiggs, C.L. & Martin, A. Properties and mechanisms of perceptual priming. Curr. Opin. Neurobiol. 8, 227–233 (1998).

    CAS  Article  Google Scholar 

  44. 44

    Dobbins, I.G., Schnyer, D.M., Verfaellie, M. & Schacter, D.L. Cortical activity reductions during repetition priming can result from rapid response learning. Nature 428, 316–319 (2004).

    CAS  Article  Google Scholar 

  45. 45

    Henson, R., Shallice, T. & Dolan, R. Neuroimaging evidence for dissociable forms of repetition priming. Science 287, 1269–1272 (2000).

    CAS  Article  Google Scholar 

  46. 46

    Schacter, D.L. et al. Brain regions associated with retrieval of structurally coherent visual information. Nature 376, 587–590 (1995).

    CAS  Article  Google Scholar 

  47. 47

    Uecker, A. et al. Neuroanatomical correlates of implicit and explicit memory for structurally possible and impossible visual objects. Learn. Mem. 4, 337–355 (1997).

    CAS  Article  Google Scholar 

  48. 48

    Fisher, R.A. Statistical Methods for Research Workers. edn. 14 (Hafner, New York, 1973).

    Google Scholar 

  49. 49

    Schacter, D.L., Israel, L. & Racine, C. Suppressing false recognition in younger and older adults: the distinctiveness heuristic. J. Mem. Lang. 40, 1–24 (1999).

    Article  Google Scholar 

  50. 50

    Dodson, C.S. & Schacter, D.L. Aging and strategic retrieval processes: reducing false memories with a distinctiveness heuristic. Psychol. Aging 17, 405–415 (2002).

    Article  Google Scholar 

Download references

Acknowledgements

We thank L. Moo for helpful discussions and use of her BrainVoyager software. This work was supported by grants MH-NS60941 from the National Institute of Mental Health and AG08441 from the National Institute on Aging.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Scott D Slotnick.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Slotnick, S., Schacter, D. A sensory signature that distinguishes true from false memories. Nat Neurosci 7, 664–672 (2004). https://doi.org/10.1038/nn1252

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing