Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Ascl1/Mash1 is required for the development of central serotonergic neurons

Abstract

The transcriptional control of the differentiation of central serotonergic (5-HT) neurons in vertebrates has recently come under scrutiny and has been shown to involve the homeobox genes Nkx2-2 and Lmx1b, the Ets-domain gene Pet1 (also known as Fev) and the zinc-finger gene Gata3. The basic helix-loop-helix (bHLH) gene Ascl1 (also known as Mash1) is coexpressed with Nkx2-2 in the neuroepithelial domain of the hindbrain, which gives rise to 5-HT neurons. Here we show in the mouse that Ascl1 is essential for the birth of 5-HT neurons, both as a proneural gene for the production of postmitotic neuronal precursors and as a determinant of the serotonergic phenotype for the parallel activation of Gata3, Lmx1b and Pet1. Thus Ascl1, which is essential for noradrenergic differentiation, is also a determinant of the serotonergic phenotype.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Expression pattern of Ascl1, Pet1, Phox2b and βIII-tubulin (Tuj1) in the ventral hindbrain.
Figure 2: Serotonergic differentiation is virtually abolished in the hindbrain of Ascl1 mutants.
Figure 3: Expression of other progenitor determinants is not affected in the ventral hindbrain of Ascl1 mutants.
Figure 4: Neurogenesis stops after E10.5 in pMNv of Ascl1−/− mutants.
Figure 5: Proneural activities of Phox2b and Ascl1 in pMNv at E9.75.
Figure 6: Neurog2 can rescue the neurogenic but not the serotonergic deficit of Ascl1 mutants.
Figure 7: Gata3 controls 5-HT differentiation independently of Lmx1b and Pet1.

Similar content being viewed by others

References

  1. Dahlström, A. & Fuxe, K. Evidence for the existence of monoamine-containing neurons in the central nervous system. I. Demonstration of monoamines in the cell bodies of brain stem neurons. Acta Physiol. Scand. 62 (Suppl. 232), 1–55 (1964).

    Google Scholar 

  2. Tork, I. Anatomy of the serotonergic system. Ann. N. Y. Acad. Sci. USA 600, 9–34; discussion 34–35 (1990).

    Article  CAS  Google Scholar 

  3. Hynes, M. & Rosenthal, A. Specification of dopaminergic and serotonergic neurons in the vertebrate CNS. Curr. Opin. Neurobiol. 9, 26–36 (1999).

    Article  CAS  PubMed  Google Scholar 

  4. Konig, N., Wilkie, M.B. & Lauder, J.M. Tyrosine hydroxylase and serotonin-containing cells in embryonic rat rhombencephalon: a whole-mount immunocytochemical study. J. Neurosci. Res. 20, 212–223 (1988).

    Article  CAS  PubMed  Google Scholar 

  5. Jacobs, B.L. & Azmitia, E.C. Structure and function of the brain serotonin system. Physiol. Rev. 72, 165–229 (1992).

    Article  CAS  PubMed  Google Scholar 

  6. Briscoe, J. et al. Homeobox gene Nkx2.2 and specification of neuronal identity by graded Sonic hedgehog signalling. Nature 398, 622–627 (1999).

    Article  CAS  PubMed  Google Scholar 

  7. Pattyn, A. et al. Coordinated temporal and spatial control of motor neuron and serotonergic neuron generation from a common pool of CNS progenitors. Genes Dev. 17, 729–737 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ding, Y.Q. et al. Lmx1b is essential for the development of serotonergic neurons. Nat. Neurosci. 6, 933–938 (2003).

    Article  CAS  PubMed  Google Scholar 

  9. van Doorninck, J.H. et al. GATA3 is involved in the development of serotonergic neurons in the caudal raphe nuclei. J. Neurosci. 19, RC12 (1999).

    Article  CAS  PubMed  Google Scholar 

  10. Hendricks, T.J. et al. Pet-1 ETS gene plays a critical role in 5-HT neuron development and is required for normal anxiety-like and aggressive behavior. Neuron 37, 233–247 (2003).

    Article  CAS  PubMed  Google Scholar 

  11. Cheng, L. et al. Lmx1b, Pet-1, and Nkx2.2 coordinately specify serotonergic neurotransmitter phenotype. J. Neurosci. 23, 9961–9967 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Blaugrund, E. et al. Distinct subpopulations of enteric neuronal progenitors defined by time of development, sympathoadrenal lineage markers and Mash-1-dependence. Development 122, 309–320 (1996).

    CAS  PubMed  Google Scholar 

  13. Lanigan, T.M., DeRaad, S.K. & Russo, A.F. Requirement of the MASH-1 transcription factor for neuroendocrine differentiation of thyroid C cells. J. Neurobiol. 34, 126–134 (1998).

    Article  CAS  PubMed  Google Scholar 

  14. Hirsch, M.R. et al. Control of noradrenergic differentiation and Phox2a expression by MASH1 in the central and peripheral nervous system. Development 125, 599–608 (1998).

    CAS  PubMed  Google Scholar 

  15. Bertrand, N., Castro, D.S. & Guillemot, F. Proneural genes and the specification of neural cell types. Nat. Rev. Neurosci. 3, 517–530 (2002).

    Article  CAS  PubMed  Google Scholar 

  16. Kageyama, R. & Ohtsuka, T. The Notch-Hes pathway in mammalian neural development. Cell Res. 9, 179–188 (1999).

    Article  CAS  PubMed  Google Scholar 

  17. Henrique, D. et al. Expression of a Delta homologue in prospective neurons in the chick. Nature 375, 787–790 (1995).

    Article  CAS  PubMed  Google Scholar 

  18. Tiveron, M-C., Pattyn, A., Hirsch, M-R. & Brunet, J-F. Role of Phox2b and Mash1 in the generation of the vestibular efferent nucleus. Dev. Biol. 260, 46–57 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. Parras, C.M. et al. Divergent functions of the proneural genes Mash1 and Ngn2 in the specification of neuronal subtype identity. Genes Dev. 16, 324–338 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Nieto, M., Schuurmans, C., Britz, O. & Guillemot, F. Neural bHLH genes control the neuronal versus glial fate decision in cortical progenitors. Neuron 29, 401–413 (2001).

    Article  CAS  PubMed  Google Scholar 

  21. Lim, K.C. et al. Gata3 loss leads to embryonic lethality due to noradrenaline deficiency of the sympathetic nervous system. Nat.Genet. 25, 209–212 (2000).

    Article  CAS  PubMed  Google Scholar 

  22. Guillemot, F. et al. Mammalian achaete-scute homolog 1 is required for the early development of olfactory and autonomic neurons. Cell 75, 463–476 (1993).

    Article  CAS  PubMed  Google Scholar 

  23. Pattyn, A. et al. Complementary roles for Nkx6 and Nkx2 class proteins in the establishment of motoneuron identity in the hindbrain. Development 130, 4149–4159 (2003).

    Article  CAS  PubMed  Google Scholar 

  24. Pabst, O., Rummelies, J., Winter, B. & Arnold, H.H. Targeted disruption of the homeobox gene Nkx2. 9 reveals a role in development of the spinal accessory nerve. Development 130, 1193–1202 (2003).

    Article  CAS  PubMed  Google Scholar 

  25. Pattyn, A., Hirsch, M-R., Goridis, C. & Brunet, J-F. Control of hindbrain motor neuron differentiation by the homeobox gene Phox2b. Development 127, 1349–1358 (2000).

    CAS  PubMed  Google Scholar 

  26. Dubreuil, V. et al. The Phox2b transcription factor coordinately regulates neuronal cell cycle exit and identity. Development 127, 5191–5201 (2000).

    CAS  PubMed  Google Scholar 

  27. Lo, L., Tiveron, M-C. & Anderson, D.J. MASH1 activates expression of the paired homeodomain transcription factor Phox2a, and couples pan-neuronal and subtype-specific components of autonomic neuronal identity. Development 125, 609–620 (1998).

    CAS  PubMed  Google Scholar 

  28. Pata, I. et al. The transcription factor GATA3 is a downstream effector of Hoxb1 specification in rhombomere 4. Development 126, 5523–5531 (1999).

    CAS  PubMed  Google Scholar 

  29. Tsai, F.Y. et al. An early haematopoietic defect in mice lacking the transcription factor GATA-2. Nature 371, 221–226 (1994).

    Article  CAS  PubMed  Google Scholar 

  30. Pattyn, A. et al. The homeobox gene Phox2b is essential for the development of autonomic neural crest derivatives. Nature 399, 366–370 (1999).

    Article  CAS  PubMed  Google Scholar 

  31. Pattyn, A., Goridis, C. & Brunet, J-F. Specification of the central noradrenergic phenotype by the homeobox gene Phox2b. Mol. Cell. Neurosci. 15, 235–243 (2000).

    Article  CAS  PubMed  Google Scholar 

  32. Lee, M.K. et al. The expression and posttranslational modification of a neuron-specific beta-tubulin isotype during chick embryogenesis. Cell Motil. Cytoskeleton 17, 118–132 (1990).

    Article  CAS  PubMed  Google Scholar 

  33. Bettenhausen, B. et al. Transient and restricted expression during mouse embryogenesis of Dll1, a murine gene closely related to Drosophila Delta. Development 121, 2407–2418 (1995).

    CAS  PubMed  Google Scholar 

  34. Nardelli, J. et al. Expression and genetic interaction of transcription factors GATA2 and GATA3 during development of the mouse central nervous system. Dev. Biol. 210, 305–321 (1999).

    Article  CAS  PubMed  Google Scholar 

  35. George, K.M. et al. Embryonic expression and cloning of the murine GATA3 gene. Development 120, 2673–2686 (1994).

    CAS  PubMed  Google Scholar 

  36. Takebayashi, K., Akazawa, C., Nakanishi, S. & Kageyama, R. Structure and promoter analysis of the gene encoding the mouse helix-loop-helix factor HES-5. J. Biol. Chem. 270, 1342–1349 (1995).

    Article  CAS  PubMed  Google Scholar 

  37. Guillemot, F. & Joyner, A.L. Dynamic expression of the murine Achaete-Scute homologue Mash-1 in the developing nervous system. Mech. Dev. 42, 171–185 (1993).

    Article  CAS  PubMed  Google Scholar 

  38. Cau, E., Gradwohl, G., Fode, C. & Guillemot, F. Mash1 activates a cascade of bHLH regulators in olfactory neuron progenitors. Development 124, 1611–1621 (1997).

    CAS  PubMed  Google Scholar 

  39. Shimamura, K. et al. Longitudinal organization of the anterior neural plate and neural tube. Development 121, 3923–3933 (1995).

    CAS  PubMed  Google Scholar 

  40. Pabst, O., Herbrand, H. & Arnold, H.H. Nkx2-9 is a novel homeobox transcription factor which demarcates ventral domains in the developing mouse CNS. Mech. Dev. 73, 85–93 (1998).

    Article  CAS  PubMed  Google Scholar 

  41. Tiveron, M-C., Hirsch, M-R. & Brunet, J-F. The expression pattern of the transcription factor Phox2 delineates synaptic pathways of the autonomic nervous system. J. Neurosci. 16, 7649–7660 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Pattyn, A. et al. Expression and interactions of the two closely related homeobox genes Phox2a and Phox2b during neurogenesis. Development 124, 4065–4075 (1997).

    CAS  PubMed  Google Scholar 

  43. Kania, A., Johnson, R.L. & Jessell, T.M. Coordinate roles for LIM homeobox genes in directing the dorsoventral trajectory of motor axons in the vertebrate limb. Cell 102, 161–173 (2000).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank D. Engel, J. Ericson, R. Kageyama, J. Nardelli, O. Pabst, C. Ragsdale and J. Rubenstein for antibodies and probes. This work was supported by the Centre National de la Recherche Scientifique and grants from the European Community (QLG2-CT-2001-01467), Association pour la Recherche sur le Cancer (ARC) and Association Française contre les Myopathies (AFM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-François Brunet.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

In situ hybridizations showing that genes encoding neurogenins are not expressed in pMNv and are not upregulated in Ascl1 mutants. (JPG 40 kb)

Supplementary Fig. 2

Schematic of pan-neuronal and type-specific transcriptional cascades in pMNv and its progeny from E9.5 to E12 (see text for details). The upregulation of Ascl1 by Phox2b and its intrinsic proneural function (dashed arrows), unmasked by loss-of-function26 and gain-of-function44 experiments are of uncertain functional relevance between E9 and E10.5. The involvement and hierarchical position of Gata2 (italics) during 5-HT neuron production are hypothetical. (GIF 20 kb)

44. Dubreuil, V. et al. The role of Phox2b in synchronizing pan-neuronal and type-specific aspects of neurogenesis. Development 129, 5241-5253 (2002).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pattyn, A., Simplicio, N., van Doorninck, J. et al. Ascl1/Mash1 is required for the development of central serotonergic neurons. Nat Neurosci 7, 589–595 (2004). https://doi.org/10.1038/nn1247

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1247

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing