Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Astrocytes contain a vesicular compartment that is competent for regulated exocytosis of glutamate

Abstract

Astrocytes establish rapid cell-to-cell communication through the release of chemical transmitters. The underlying mechanisms and functional significance of this release are, however, not well understood. Here we identify an astrocytic vesicular compartment that is competent for glutamate exocytosis. Using postembedding immunogold labeling of the rat hippocampus, we show that vesicular glutamate transporters (VGLUT1/2) and the vesicular SNARE protein, cellubrevin, are both expressed in small vesicular organelles that resemble synaptic vesicles of glutamatergic terminals. Astrocytic vesicles, which are not as densely packed as their neuronal counterparts, can be observed in small groups at sites adjacent to neuronal structures bearing glutamate receptors. Fluorescently tagged VGLUT-containing vesicles were studied dynamically in living astrocytes by total internal reflection fluorescence (TIRF) microscopy. After activation of metabotropic glutamate receptors, astrocytic vesicles underwent rapid (milliseconds) Ca2+- and SNARE-dependent exocytic fusion that was accompanied by glutamate release. These data document the existence of a Ca2+-dependent quantal glutamate release activity in glia that was previously considered to be specific to synapses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: VGLUT-positive small vesicular organelles in astrocytic processes that face neuronal structures in the hippocampus.
Figure 2: Colocalization of VGLUTs and cellubrevin in astrocytic vesicles: proximity to neuronal membranes carrying NMDA receptors.
Figure 3: Colocalization of VGLUTs and cellubrevin in small vesicles in the processes of cultured astrocytes.
Figure 4: Exocytic fusions of VGLUT-positive vesicles monitored in living astrocytes.
Figure 5: Properties of mGluR-evoked exocytosis of VGLUT+ vesicles.
Figure 6: Astrocyte vesicle fusions evoke glutamate-dependent [Ca2+]i elevations in INS-1 cells.

Similar content being viewed by others

References

  1. Volterra, A. & Bezzi, P. Release of transmitters from glial cells. in The Tripartite Synapse: Glia in Synaptic Transmission (eds. Volterra, A., Magistretti, P.J. & Haydon, P.G.) 164–182 (Oxford Univ. Press, Oxford, UK, 2002).

    Google Scholar 

  2. Parri, R.H., Gould, T.M. & Crunelli, V. Spontaneous astrocytic Ca2+ oscillations in situ drive NMDAR-mediated neuronal excitation. Nat. Neurosci. 4, 803–812 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Pasti, L., Volterra, A., Pozzan, T. & Carmignoto, G. Intracellular calcium oscillations in astrocytes: a highly plastic, bidirectional form of communication between neurons and astrocytes in situ. J. Neurosci. 17, 7817–7830 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kang, J., Jiang, L., Goldman, S.A. & Nedergaard, M. Astrocyte-mediated potentiation of inhibitory synaptic transmission. Nat. Neurosci. 1, 683–692 (1998).

    Article  CAS  PubMed  Google Scholar 

  5. Zhang, J.M. et al. ATP released by astrocytes mediates glutamatergic activity-dependent heterosynaptic suppression. Neuron 40, 971–982 (2003).

    Article  CAS  PubMed  Google Scholar 

  6. Newman, E.A. Propagation of intercellular calcium waves in retinal astrocytes and Müller cells. J. Neurosci. 21, 2215–2223 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Schipke, C.G., Boucsein, C., Ohlemeyer, C., Kirchhoff, F. & Kettenmann, H. Astrocyte Ca2+ waves trigger responses in microglial cells in brain slices. FASEB J. 16, 255–257 (2002).

    Article  CAS  PubMed  Google Scholar 

  8. Parpura, V. et al. Glutamate-mediated astrocyte-neuron signalling. Nature 369, 744–747 (1994).

    Article  CAS  PubMed  Google Scholar 

  9. Bezzi, P., et al. Prostaglandins stimulate calcium-dependent glutamate release in astrocytes. Nature 391, 281–285 (1998).

    Article  CAS  PubMed  Google Scholar 

  10. Newman, E.A. New roles for astrocytes: regulation of synaptic transmission. Trends Neurosci. 26, 536–542 (2003).

    Article  CAS  PubMed  Google Scholar 

  11. Bezzi, P. et al. CXCR4-activated astrocyte glutamate release via TNFα: amplification by microglia triggers neurotoxicity. Nat. Neurosci. 4, 702–710 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Araque, A., Li, N., Doyle, R.T. & Haydon, P.G. SNARE protein-dependent glutamate release from astrocytes. J. Neurosci. 20, 666–673 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Pasti, L., Zonta, M., Pozzan, T., Vicini, S. & Carmignoto G. Cytosolic calcium oscillations in astrocytes may regulate exocytotic release of glutamate. J. Neurosci. 21, 477–484 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Volterra, A. & Meldolesi, J. Quantal release of transmitter: not only from neurons but from astrocytes as well? in Neuroglia, Edn. 2 (eds. Kettenmann, H. & Ransom, B.) 190–201 (Oxford Univ. Press, New York, 2004).

    Chapter  Google Scholar 

  15. Nedergaard, M., Takano, T. & Hansen, A.J. Beyond the role of glutamate as a neurotransmitter. Nat. Rev. Neurosci. 3, 748–754 (2002).

    Article  CAS  PubMed  Google Scholar 

  16. Fremeau, R.T. Jr., Voglmaier, S., Seal, R & Edwards, R.H. VGLUTs define subsets of excitatory neurons and suggest novel roles for glutamate. Trends Neurosci. 27, 98–103 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. Jahn, R., Lang, T. & Südhof, T.C. Membrane fusion. Cell 112, 519–533 (2003).

    Article  CAS  PubMed  Google Scholar 

  18. Tsuboi, T., Zhao, C., Terakawa, S. & Rutter, G.A. Simultaneous evanescent wave imaging of insulin vesicle membrane and cargo during a single exocytotic event. Current Biol. 10, 1307–1310 (2000).

    Article  CAS  Google Scholar 

  19. Avery, J. et al. A cell-free system for regulated exocytosis in PC12 cells. J. Cell. Biol. 148, 317–324 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zenisek, D., Steyer, J.A. & Almers, W. Transport, capture and exocytosis of single synaptic vesicles at active zones. Nature 406, 849–854 (2000).

    Article  CAS  PubMed  Google Scholar 

  21. Stout, A.L. & Axelrod, D. Evanescent field excitation of fluorescence by epiillumination microscopy. Appl. Optics 28, 5237–5242 (1989).

    Article  CAS  Google Scholar 

  22. Steyer, J.A. & Almers, W. A real-time view of life within 100 nm of the plasma membrane. Nat. Rev. Mol. Cell. Biol. 2, 268–275 (2001).

    Article  CAS  PubMed  Google Scholar 

  23. Schröder, W. et al. Lesion-induced changes of electrophysiological properties in astrocytes of the rat dentate gyrus. Glia 28, 166–174 (1999).

    Article  PubMed  Google Scholar 

  24. Seifert, G., Becker, A. & Steinhäuser, C. Combining patch-clamp techniques with RT-PCR in Neuromethods: Patch-clamp Analysis: Advanced Techniques Vol 35 (eds. Walz, W., Boulton, A.A. & Baker, G.B.) 301–330 (Humana Press, Totowa, NJ, 2002).

    Chapter  Google Scholar 

  25. Chaudhry, F.A. et al. Glutamate transporters in glial plasma membranes: highly differentiated localizations revealed by quantitative ultrastructural immunocytochemistry. Neuron 15, 711–720 (1995).

    Article  CAS  PubMed  Google Scholar 

  26. Randhawa, V.K. et al. VAMP2, but not VAMP3/cellubrevin, mediates insulin-dependent incorporation of GLUT4 into the plasma membrane of L6 myoblasts. Mol. Biol. Cell. 11, 2403–2417 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Steyer, J.A., Horstmann, H. & Almers, W. Transport, docking and exocytosis of single secretory granules in live chromaffin cells. Nature 388, 474–478 (1997).

    Article  CAS  PubMed  Google Scholar 

  28. Rosenthal, L. & Meldolesi, J. Alpha-latrotoxin and related toxins. Pharmacol. Ther. 42, 115–134 (1989).

    Article  CAS  PubMed  Google Scholar 

  29. Muyderman, H. et al. α1-adrenergic modulation of metabotropic glutamate-receptor induced calcium oscillations and glutamate release in astrocytes. J. Biol. Chem 276, 46504–46514 (2001).

    Article  CAS  PubMed  Google Scholar 

  30. Humeau, Y., Doussau, F., Grant, N.J. & Poulain, B. How botulinum and tetanus neurotoxins block neurotransmitter release. Biochimie 82, 427–446 (2000).

    Article  CAS  PubMed  Google Scholar 

  31. Fremeau, R.T. Jr. et al. The expression of vesicular glutamate transporters defines two classes of excitatory synapse. Neuron 31, 247–260 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. Matthias, K. et al. Segregated expression of AMPA-type glutamate receptors and glutamate transporters defines distinct astrocyte populations in the mouse hippocampus. J. Neurosci. 23, 1750–1758 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Fremeau, R.T. Jr. et al. The identification of vesicular glutamate transporter 3 suggests novel modes of signaling by glutamate. Proc. Natl. Acad. Sci. USA 99, 14488–14493 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Xu, T., Binz, T., Niemann, H. & Neher, E. Multiple kinetic components of exocytosis distinguished by neurotoxin sensitivity. Nat. Neurosci. 1, 192–200 (1998).

    Article  CAS  PubMed  Google Scholar 

  35. Tse, F.W. & Tse, A. Regulation of exocytosis via release of Ca2+ from intracellular stores. Bioessays 21, 861–865 (1999).

    Article  CAS  PubMed  Google Scholar 

  36. Tse, F.W., Tse, A., Hille, B., Horstmann, H. & Almers, W. Local Ca2+ release from internal stores controls exocytosis in pituitary gonadotrophs. Neuron 18, 121–132 (1997).

    Article  CAS  PubMed  Google Scholar 

  37. Becherer, U., Moser, T., Stümer, W. & Oheim, M. Calcium regulates exocytosis at the level of single vesicles. Nat. Neurosci. 8, 846–853 (2003).

    Article  Google Scholar 

  38. Alés, E. et al. High calcium concentrations shift the mode of exocytosis to the kiss-and-run mechanism. Nat. Cell. Biol. 1, 40–44 (1999).

    Article  PubMed  Google Scholar 

  39. Valtorta, F., Meldolesi, J. & Fesce, R. Synaptic vesicles: is kissing a matter of competence? Trends Cell. Biol. 11, 324–328 (2001).

    Article  CAS  PubMed  Google Scholar 

  40. Kasai, H. Comparative biology of Ca2+-dependent exocytosis: implications of kinetic diversity for secretory function. Trends Neurosci. 22, 88–93 (1999).

    Article  CAS  PubMed  Google Scholar 

  41. Matsui, K. & Jahr, C.E. Ectopic release of synaptic vesicles. Neuron 40, 1173–1183 (2003).

    Article  CAS  PubMed  Google Scholar 

  42. Bushong, E.A., Martone, M.E., Jones, Y.Z. & Ellisman, M.H. Protoplasmic astrocytes in CA1 stratum radiatum occupy separate anatomical domains. J. Neurosci. 22, 183–192 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Grosche, J. et al. Microdomains for neuron-glia interaction: parallel fiber signalling to Bergmann glial cells. Nat. Neurosci. 2, 139–143 (1999).

    Article  CAS  PubMed  Google Scholar 

  44. Bellocchio, E.E. et al. The localization of the brain-specific inorganic phosphate transporter suggests a specific presynaptic role in glutamatergic transmission. J. Neurosci. 18, 8648–8659 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Chilcote, T.J. et al. Cellubrevin and synaptobrevins: similar subcellular localization and biochemical properties in PC12 cells. J. Cell. Biol. 129, 219–231 (1995).

    Article  CAS  PubMed  Google Scholar 

  46. Gundersen, V. et al. Synaptic vesicular localization and exocytosis of L-aspartate in excitatory nerve terminals: a quantitative immunogold analysis in rat hippocampus. J. Neurosci. 18, 6059–6070 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Bergersen, L., Ruiz, A., Bjaalie, J.G., Kullmann, D.M. & Gundersen, V. GABA and GABAA receptors at hippocampal mossy fibre synapses. Eur. J. Neurosci. 18, 931–941 (2003).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank H. Stubbe, Y. Gomez, K. Hüttmann and Centre de Microscopie Electronique, University of Lausanne for experimental support; J.-Y. Chatton, T. Coppola, P. Jourdain, G. Knott, T. Lang and R. Stoop for scientific discussions; R. Jahn, J. Storm-Mathisen for insights at various stages of this work and P. Clarke, J. Meldolesi, R. Regazzi and J. Storm-Mathisen for comments on the manuscript. This work was supported by grants OFES 00.0553 and FNRS 3100A0-100850/1 to A.V. and by Deutsche Forschungsgemeinschaft (SFB-TR3) and Fonds der Chemischen Industrie to C.S. V.G. is a visiting fellow within the European Community grant QLG3-CT-2001–2004 and recipient of a fellowship from the Norwegian Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Volterra.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Cumulative number of AO flashes plotted against time during a 3 min application of LTx (12 nM; n = 20; Supplementary Fig. 1a) or IONO (10 μM; n = 38; Supplementary Fig. 1b). (JPG 27 kb)

Supplementary Table 1 (PDF 9 kb)

Supplementary Note (PDF 23 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bezzi, P., Gundersen, V., Galbete, J. et al. Astrocytes contain a vesicular compartment that is competent for regulated exocytosis of glutamate. Nat Neurosci 7, 613–620 (2004). https://doi.org/10.1038/nn1246

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1246

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing