Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Dynein motors transport activated Trks to promote survival of target-dependent neurons

Abstract

Mutations that alter dynein function are associated with neurodegenerative diseases, but it is not known why defects in dynein-dependent transport impair neuronal survival. Here we show that dynein function in axons is selectively required for the survival of neurons that depend on target-derived neurotrophins. Stimulation of axon terminals with neurotrophins causes internalization of neurotrophin receptors (Trks). Using real-time imaging of fluorescently tagged Trks, we show that dynein is required for rapid transport of internalized, activated receptors from axon terminals to remote cell bodies. When dynein-based transport is inhibited, neurotrophin stimulation of axon terminals does not support survival. These studies indicate that defects in dynein-based transport reduce trafficking of activated Trks and thereby obstruct the prosurvival effect of target-derived trophic factors, leading to degeneration of target-dependent neurons.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Trk activity in the cell body is required for survival responses to target-derived neurotrophins.
Figure 2: BDNF induces internalization and retrograde movement of TrkB.
Figure 3: FRAP assay shows retrograde transport of TrkB-GFP.
Figure 4: Inhibition of clathrin-dependent endocytosis blocks BDNF-induced TrkB internalization and transport, and prevents retrograde survival signals.
Figure 5: Introduction of exogenous dynamitin into axons selectively disrupts retrograde transport.
Figure 6: Retrograde transport of phosphorylated Trk requires receptor internalization and dynein-based transport.
Figure 7: Inhibition of dynein selectively blocks survival responses to target-derived neurotrophins.
Figure 8: Immobilized ligand stimulates internalization and transport of activated Trks, resulting in a dynein-dependent retrograde survival response.

Similar content being viewed by others

References

  1. Goldstein, L.S. & Yang, Z. Microtubule-based transport systems in neurons: the roles of kinesins and dyneins. Annu. Rev. Neurosci. 23, 39–71 (2000).

    Article  CAS  Google Scholar 

  2. Puls, I. et al. Mutant dynactin in motor neuron disease. Nat. Genet. 33, 455–456 (2003).

    Article  CAS  Google Scholar 

  3. Hafezparast, M. et al. Mutations in dynein link motor neuron degeneration to defects in retrograde transport. Science 300, 808–812 (2003).

    Article  CAS  Google Scholar 

  4. LaMonte, B. et al. Disruption of dynein/dynactin inhibits axonal transport in motor neurons causing late-onset progressive degeneration. Neuron 34, 715–727 (2002).

    Article  CAS  Google Scholar 

  5. Segal, R.A. Selectivity in neurotrophin signaling: theme and variations. Annu. Rev. Neurosci. 26, 299–330 (2003).

    Article  CAS  Google Scholar 

  6. Beattie, E.C. et al. A signaling endosome hypothesis to explain NGF actions: potential implications for neurodegeneration. Cold Spring Harb. Symp. Quant. Biol. 61, 389–406 (1996).

    Article  CAS  Google Scholar 

  7. Claude, P., Hawrot, E., Dunis, D.A. & Campenot, R.B. Binding, internalization, and retrograde transport of 125I-nerve growth factor in cultured rat sympathetic neurons. J. Neurosci. 2, 431–442 (1982).

    Article  CAS  Google Scholar 

  8. Howe, C.L., Valletta, J.S., Rusnak, A.S. & Mobley, W.C. NGF signaling from clathrin-coated vesicles. evidence that signaling endosomes serve as a platform for the ras-MAPK pathway. Neuron 32, 801–814 (2001).

    Article  CAS  Google Scholar 

  9. Watson, F.L. et al. Rapid nuclear responses to target-derived neurotrophins require retrograde transport of ligand-receptor complex. J. Neurosci. 19, 7889–7900 (1999).

    Article  CAS  Google Scholar 

  10. Korsching, S. & Thoenen, H. Quantitative demonstration of the retrograde axonal transport of endogenous nerve growth factor. Neurosci. Lett. 39, 1–4 (1983).

    Article  CAS  Google Scholar 

  11. Tsui-Pierchala, B.A. & Ginty, D.D. Characterization of an NGF-P-trkA retrograde-signaling complex and age-dependent regulation of TrkA phosphorylation in sympathetic neurons. J. Neurosci. 19, 8207–8218 (1999).

    Article  CAS  Google Scholar 

  12. Delcroix, J.D. et al. NGF signaling in sensory neurons: evidence that early endosomes carry NGF retrograde signals. Neuron 39, 69–84 (2003).

    Article  CAS  Google Scholar 

  13. MacInnis, B.L. & Campenot, R.B. Retrograde support of neuronal survival without retrograde transport of nerve growth factor. Science 295, 1536–1539 (2002).

    Article  CAS  Google Scholar 

  14. Ye, H., Kuruvilla, R., Zweifel, L.S. & Ginty, D.D. Evidence in support of signaling endosome–based retrograde survival of sympathetic neurons. Neuron 39, 57–68 (2003).

    Article  CAS  Google Scholar 

  15. Campenot, R.B. Local control of neurite development by nerve growth factor. Proc. Natl. Acad. Sci. USA 74, 4516–4519 (1977).

    Article  CAS  Google Scholar 

  16. Campenot, R.B. NGF and the local control of nerve terminal growth. J. Neurobiol. 25, 599–611 (1994).

    Article  CAS  Google Scholar 

  17. Hendry, I.A., Stach, R. & Herrup, K. Characteristics of the retrograde axonal transport system for nerve growth factor in the sympathetic nervous system. Brain Res. 82, 117–128 (1974).

    Article  CAS  Google Scholar 

  18. Stockel, K., Schwab, M. & Thoenen, H. Comparison between the retrograde axonal transport of nerve growth factor and tetanus toxin in motor, sensory and adrenergic neurons. Brain Res. 99, 1–16 (1975).

    Article  CAS  Google Scholar 

  19. Ure, D.R. & Campenot, R.B. Retrograde transport and steady-state distribution of I-125-nerve growth factor in rat sympathetic neurons in compartmented cultures. J. Neurosci. 17, 1282–1290 (1997).

    Article  CAS  Google Scholar 

  20. Watson, F.L. et al. Neurotrophins use the Erk5 pathway to mediate a retrograde survival response. Nat. Neurosci. 4, 981–988 (2001).

    Article  CAS  Google Scholar 

  21. Zhang, Y., Moheban, D., Conway, B., Bhattacharyya, A. & Segal, R. Cell surface Trk receptors mediate NGF-induced survival while internalized receptors regulate NGF-induced differentiation. J. Neurosci. 20, 5671–5678 (2000).

    Article  CAS  Google Scholar 

  22. Damke, H., Baba, T., Warnock, D.E. & Schmid, S.L. Induction of mutant dynamin specifically blocks endocytic coated vesicle formation. J. Cell. Biol. 127, 915–934 (1994).

    Article  CAS  Google Scholar 

  23. Henley, J.R., Krueger, E.W., Oswald, B.J. & McNiven, M.A. Dynamin-mediated internalization of caveolae. J. Cell. Biol. 141, 85–99 (1998).

    Article  CAS  Google Scholar 

  24. Herskovits, J.S., Burgess, C.C., Obar, R.A. & Vallee, R.B. Effects of mutant rat dynamin on endocytosis. J. Cell. Biol. 122, 565–578 (1993).

    Article  CAS  Google Scholar 

  25. Kranenburg, O., Verlaan, I. & Moolenaar, W. Dynamin is required for the activation of mitogen-activated protein (MAP) kinase by MAP kinase kinase. J. Biol. Chem. 274, 24575–24578 (1999).

    Article  Google Scholar 

  26. Davies, P.J. et al. Studies on the effects of dansylcadaverine and related compounds on receptor-mediated endocytosis in cultured cells. Diabetes Care 7 (suppl. 1), 35–41 (1984).

    CAS  PubMed  Google Scholar 

  27. Noda, Y. et al. KIFC3, a microtubule minus end–directed motor for the apical transport of annexin XIIIb–associated Triton-insoluble membranes. J. Cell. Biol. 155, 77–88 (2001).

    Article  CAS  Google Scholar 

  28. Muresan, V. One axon, many kinesins: what's the logic? J. Neurocytol. 29, 799–818 (2000).

    Article  CAS  Google Scholar 

  29. Bhattacharyya, A. et al. High resolution imaging demonstrates dynein based vesicular transport of activated Trk receptor. J. Neurobiol. 51, 302–312 (2002).

    Article  CAS  Google Scholar 

  30. Yano, H. et al. Association of Trk neurotrophin receptors with components of the cytoplasmic dynein motor. J. Neurosci. 21, RC125 (2001).

    Article  CAS  Google Scholar 

  31. Echeverri, C.J., Paschal, B.M., Vaughan, K.T. & Vallee, R.B. Molecular characterization of the 50-kD subunit of dynactin reveals function for the complex in chromosome alignment and spindle organization during mitosis. J. Cell Biol. 132, 617–633 (1996).

    Article  CAS  Google Scholar 

  32. Presley, J.F. et al. ER-to-Golgi transport visualized in living cells. Nature 389, 81–85 (1997).

    Article  CAS  Google Scholar 

  33. Burkhardt, J.K., Echeverri, C.J., Nilsson, T. & Vallee, R.B. Overexpression of the dynamitin (p50) subunit of the dynactin complex disrupts dynein-dependent maintenance of membrane organelle distribution. J. Cell Biol. 139, 469–484 (1997).

    Article  CAS  Google Scholar 

  34. Riccio, A., Pierchala, B.A., Ciarallo, C.L. & Ginty, D.D. An NGF-Trka–mediated retrograde signal to transcription factor CREB in sympathetic neurons. Science 277, 1097–1100 (1997).

    Article  CAS  Google Scholar 

  35. Senger, D.L. & Campenot, R.B. Rapid retrograde tyrosine phosphorylation of TrkA and other proteins in rat sympathetic neurons in compartmented cultures. J. Cell. Biol. 138, 411–421 (1997).

    Article  CAS  Google Scholar 

  36. Ginty, D.D. & Segal, R.A. Retrograde neurotrophin signaling: Trk-ing along the axon. Curr. Opin. Neurobiol. 12, 268–274 (2002).

    Article  CAS  Google Scholar 

  37. Mayer, T.U. et al. Small molecule inhibitor of mitotic spindle bipolarity identified in a phenotype-based screen. Science 286, 971–974 (1999).

    Article  CAS  Google Scholar 

  38. Ferhat, L. et al. Expression of the mitotic motor protein Eg5 in postmitotic neurons: implications for neuronal development. J. Neurosci. 18, 7822–7835 (1998).

    Article  CAS  Google Scholar 

  39. Verveer, P.J., Wouters, F.S., Reynolds, A.R. & Bastiaens, P.I. Quantitative imaging of lateral ErbB1 receptor signal propagation in the plasma membrane. Science 290, 1567–1570 (2000).

    Article  CAS  Google Scholar 

  40. Hempstead, B.L. et al. Overexpression of the Trk tyrosine kinase rapidly accelerates nerve growth factor–induced differentiation. Neuron 9, 883–896 (1992).

    Article  CAS  Google Scholar 

  41. Lee, F.S. & Chao, M.V. Activation of Trk neurotrophin receptors in the absence of neurotrophins. Proc. Natl. Acad. Sci. USA 98, 3555–3560 (2001).

    Article  CAS  Google Scholar 

  42. Waterman, H., Sabanai, I., Geiger, B. & Yarden, Y. Alternative intracellular routing of ErbB receptors may determine signaling potency. J. Biol. Chem. 273, 13819–13827 (1998).

    Article  CAS  Google Scholar 

  43. Yang, Y. et al. The gene encoding alsin, a protein with three guanine-nucleotide exchange factor domains, is mutated in a form of recessive amyotrophic lateral sclerosis. Nat. Genet. 29, 160–165 (2001).

    Article  CAS  Google Scholar 

  44. Parkinson, N.J. et al. Mutant β-spectrin 4 causes auditory and motor neuropathies in quivering mice. Nat. Genet. 29, 61–65 (2001).

    Article  CAS  Google Scholar 

  45. Liu, X. & Jaenisch, R. Severe peripheral sensory neuron loss and modest motor neuron reduction in mice with combined deficiency of brain-derived neurotrophic factor, neurotrophin 3 and neurotrophin 4/5. Dev. Dyn. 218, 94–101 (2000).

    Article  CAS  Google Scholar 

  46. Henderson, C.E. et al. GDNF: a potent survival factor for motoneurons present in peripheral nerve and muscle. Science 266, 1062–1064 (1994).

    Article  CAS  Google Scholar 

  47. DeChiara, T.M. et al. Mice lacking the CNTF receptor, unlike mice lacking CNTF, exhibit profound motor neuron deficits at birth. Cell 83, 313–322 (1995).

    Article  CAS  Google Scholar 

  48. Li, M., Sendtner, M. & Smith, A. Essential function of LIF receptor in motor neurons. Nature 378, 724–727 (1995).

    Article  CAS  Google Scholar 

  49. Segal, R. et al. Differential utilization of Trk autophosphorylation sites. J. Biol. Chem. 271, 20175–20181 (1996).

    Article  CAS  Google Scholar 

  50. He, T-C. et al. A simplified system for generating recombinant adenovirus. Proc. Natl. Acad. Sci. USA 95, 2509–2514 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank R. Vallee, M. Lin and P. Silver for plasmids and antibodies; and M. Greenberg, A. Hans, C. Stiles, J. Trinidad, L.-H. Tsai, F. Watson and R. Witt for discussions. This work was supported by grants from the NIH (NS35148 and NS49381), a Quan fellowship (to H.M.H.) and the Claudia Adams Barr Investigator Award (to R.A.S.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosalind A Segal.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Video 1

BDNF induces movement of TrkB-GFP positive puncta. TrkB-GFP expressing neurons were stimulated with BDNF and visualized every two minutes. Many GFP-positive puncta move rapidly toward the cell body following BDNF stimulation. (MOV 3046 kb)

Supplementary Video 2

Vehicle control stimulation of TrkB-GFP expressing neurons induces little movement of GFP-positive puncta. TrkB-GFP expressing neurons were control stimulated and visualized every two minutes. Little movement of GFP-positive puncta is observed. (MOV 1127 kb)

Supplementary Fig. 1

Kinesin inhibitor does not affect retrograde transport or phosphorylation of Trk. (a) DRG neurons were treated with the kinesin inhibitor monastrol or vehicle control (DMSO). Fluorescent WGA was added to cell bodies or distal axons for 12 hours. Monastrol inhibits anterograde, but not retrograde, transport of WGA. (b) TrkB-GFP expressing DRG neurons were treated with monastrol or vehicle, then used for the FRAP transport assay. Monastrol has no effect on BDNF-induced retrograde transport of TrkB, although the vehicle (DMSO) slightly decreases transport (compare with Fig. 2b). (c) DRG neurons were treated with monastrol or vehicle, stimulated with neurotrophin at distal axons for 20 min, then fixed and immunostained for phospho-Trk. In control-treated cultures, neurotrophin stimulation caused a 1.86 ± 0.10 fold increase in axon fluorescence, and a 1.19 ± 0.03 fold increase in cell body fluorescence. In monastrol-treated cultures, neurotrophin stimulation caused a 1.90 ± 0.06 fold increase in axon fluorescence, and a 1.29 ± 0.06 fold increase in cell body fluorescence. P < 0.005 in all conditions. (PDF 353 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heerssen, H., Pazyra, M. & Segal, R. Dynein motors transport activated Trks to promote survival of target-dependent neurons. Nat Neurosci 7, 596–604 (2004). https://doi.org/10.1038/nn1242

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1242

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing