Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Otx2 homeobox gene controls retinal photoreceptor cell fate and pineal gland development

Abstract

Understanding the molecular mechanisms by which distinct cell fate is determined during organogenesis is a central issue in development and disease. Here, using conditional gene ablation in mice, we show that the transcription factor Otx2 is essential for retinal photoreceptor cell fate determination and development of the pineal gland. Otx2-deficiency converted differentiating photoreceptor cells to amacrine-like neurons and led to a total lack of pinealocytes in the pineal gland. We also found that Otx2 transactivates the cone-rod homeobox gene Crx, which is required for terminal differentiation and maintenance of photoreceptor cells. Furthermore, retroviral gene transfer of Otx2 steers retinal progenitor cells toward becoming photoreceptors. Thus, Otx2 is a key regulatory gene for the cell fate determination of retinal photoreceptor cells. Our results reveal the key molecular steps required for photoreceptor cell-fate determination and pinealocyte development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Comparison of Otx2 and Crx expression in mouse retina.
Figure 2: Generation of Crx-cre transgenic mice and Otx2 conditional knockout mice.
Figure 3: Otx2 is required for photoreceptor development.
Figure 4: Otx2 regulates Crx expression.
Figure 5: OTX2 induces retinal progenitors to photoreceptor cell fate.
Figure 6: Immunostaning with amacrine-subpopulation markers.
Figure 7: Otx2 CKO retina becomes degenerative.

Similar content being viewed by others

References

  1. Furukawa, T., Morrow, E.M. & Cepko, C.L. Crx, a novel otx-like homeobox gene, shows photoreceptor-specific expression and regulates photoreceptor differentiation. Cell 91, 531–541 (1997).

    Article  CAS  PubMed  Google Scholar 

  2. Chen, S. et al. Crx, a novel Otx-like paired-homeodomain protein, binds to and transactivates photoreceptor cell-specific genes. Neuron 19, 1017–1030 (1997).

    Article  CAS  PubMed  Google Scholar 

  3. Furukawa, T., Morrow, E.M., Li, T., Davis, F.C. & Cepko, C.L. Retinopathy and attenuated circadian entrainment in Crx-deficient mice. Nat. Genet. 23, 466–470 (1999).

    Article  CAS  PubMed  Google Scholar 

  4. Freund, C.L. et al. Cone-rod dystrophy due to mutations in a novel photoreceptor-specific homeobox gene (CRX) essential for maintenance of the photoreceptor. Cell 91, 543–553 (1997).

    Article  CAS  PubMed  Google Scholar 

  5. Swain, P.K. et al. Mutations in the cone-rod homeobox gene are associated with the cone-rod dystrophy photoreceptor degeneration. Neuron 19, 1329–1336 (1997).

    Article  CAS  PubMed  Google Scholar 

  6. Sohocki, M.M. et al. A range of clinical phenotypes associated with mutations in CRX, a photoreceptor transcription-factor gene. Am. J. Hum. Genet. 63, 1307–1315 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Freund, C.L. et al. De novo mutations in the CRX homeobox gene associated with Leber congenital amaurosis. Nat. Genet. 18, 311–312 (1998).

    Article  CAS  PubMed  Google Scholar 

  8. Simeone, A., Acampora, D., Gulisano, M., Stornaiuolo, A. & Boncinelli, E. Nested expression domains of four homeobox genes in developing rostral brain. Nature 358, 687–690 (1992).

    Article  CAS  PubMed  Google Scholar 

  9. Simeone, A. et al. A vertebrate gene related to orthodenticle contains a homeodomain of the bicoid class and demarcates anterior neuroectoderm in the gastrulating mouse embryo. EMBO J. 12, 2735–2747 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Vandendries, E.R., Johnson, D. & Reinke, R. orthodenticle is required for photoreceptor cell development in the Drosophila eye. Dev. Biol. 173, 243–255 (1996).

    Article  CAS  PubMed  Google Scholar 

  11. Ang, S.L. et al. A targeted mouse Otx2 mutation leads to severe defects in gastrulation and formation of axial mesoderm and to deletion of rostral brain. Development 122, 243–252 (1996).

    CAS  PubMed  Google Scholar 

  12. Acampora, D. et al. Forebrain and midbrain regions are deleted in Otx2−/− mutants due to a defective anterior neuroectoderm specification during gastrulation. Development 121, 3279–3290 (1995).

    CAS  PubMed  Google Scholar 

  13. Matsuo, I., Kuratani, S., Kimura, C., Takeda, N. & Aizawa, S. Mouse Otx2 functions in the formation and patterning of rostral head. Genes Dev. 9, 2646–2658 (1995).

    Article  CAS  PubMed  Google Scholar 

  14. Bovolenta, P., Mallamaci, A., Briata, P., Corte, G. & Boncinelli, E. Implication of OTX2 in pigment epithelium determination and neural retina differentiation. J. Neurosci. 17, 4243–4252 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Nothias, F., Fishell, G. & Ruiz i Altaba, A. Cooperation of intrinsic and extrinsic signals in the elaboration of regional identity in the posterior cerebral cortex. Curr. Biol. 8, 459–462 (1998).

    Article  CAS  PubMed  Google Scholar 

  16. Baas, D. et al. The subcellular localization of Otx2 is cell-type specific and developmentally regulated in the mouse retina. Brain Res. Mol. Brain Res. 78, 26–37 (2000).

    Article  CAS  PubMed  Google Scholar 

  17. Martinez-Morales, J.R., Signore, M., Acampora, D., Simeone, A. & Bovolenta, P. Otx genes are required for tissue specification in the developing eye. Development 128, 2019–2030 (2001).

    CAS  PubMed  Google Scholar 

  18. Viczian, A.S., Vignali, R., Zuber, M.E., Barsacchi, G. & Harris, W.A. XOtx5b and XOtx2 regulate photoreceptor and bipolar fates in the Xenopus retina. Development 130, 1281–1294 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. Furukawa, A., Koike, C., Lippincott, P., Cepko, C.L. & Furukawa, T. The mouse Crx 5′-upstream transgene sequence directs cell-specific and developmentally regulated expression in retinal photoreceptor cells. J. Neurosci. 22, 1640–1647 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sakai, K. & Miyazaki, J. A transgenic mouse line that retains Cre recombinase activity in mature oocytes irrespective of the cre transgene transmission. Biochem. Biophys. Res. Commun. 237, 318–324 (1997).

    Article  CAS  PubMed  Google Scholar 

  21. Tian, E., Kimura, C., Takeda, N., Aizawa, S. & Matsuo, I. Otx2 is required to respond to signals from anterior neural ridge for forebrain specification. Dev Biol 242, 204–223 (2002).

    Article  CAS  PubMed  Google Scholar 

  22. Courtois, V. et al. New Otx2 mRNA isoforms expressed in the mouse brain. J. Neurochem. 84, 840–853 (2003).

    Article  CAS  PubMed  Google Scholar 

  23. Haverkamp, S. & Wassle, H. Immunocytochemical analysis of the mouse retina. J. Comp. Neurol. 424, 1–23 (2000).

    Article  CAS  PubMed  Google Scholar 

  24. Dyer, M.A. & Cepko, C.L. The p57Kip2 cyclin kinase inhibitor is expressed by a restricted set of amacrine cells in the rodent retina. J. Comp. Neurol. 429, 601–614 (2001).

    Article  CAS  PubMed  Google Scholar 

  25. Turner, D.L. & Cepko, C.L. A common progenitor for neurons and glia persists in rat retina late in development. Nature 328, 131–136 (1987).

    Article  CAS  PubMed  Google Scholar 

  26. Marquardt, T. et al. Pax6 is required for the multipotent state of retinal progenitor cells. Cell 105, 43–55 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. Wang, S.W. et al. Requirement for math5 in the development of retinal ganglion cells. Genes Dev. 15, 24–29 (2000).

    Article  Google Scholar 

  28. Brown, N.L., Patel, S., Brzezinski, J. & Glaser, T. Math5 is required for retinal ganglion cell and optic nerve formation. Development 128, 2497–2508 (2001).

    CAS  PubMed  Google Scholar 

  29. Kanekar, S. et al. Xath5 participates in a network of bHLH genes in the developing Xenopus retina. Neuron 19, 981–994 (1997).

    Article  CAS  PubMed  Google Scholar 

  30. Liu, W., Mo, Z. & Xiang, M. The Ath5 proneural genes function upstream of Brn3 POU domain transcription factor genes to promote retinal ganglion cell development. Proc. Natl. Acad. Sci. USA 98, 1649–1654 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Dyer, M.A., Livesey, F.J., Cepko, C.L. & Oliver, G. Prox1 function controls progenitor cell proliferation and horizontal cell genesis in the mammalian retina. Nat. Genet. 34, 53–58 (2003).

    Article  CAS  PubMed  Google Scholar 

  32. Mears, A.J. et al. Nrl is required for rod photoreceptor development. Nat. Genet. 29, 447–452 (2001).

    Article  CAS  PubMed  Google Scholar 

  33. Yan, R.T. & Wang, S.Z. neuroD induces photoreceptor cell overproduction in vivo and de novo generation in vitro. J. Neurobiol. 36, 485–496 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Morrow, E.M., Furukawa, T., Lee, J.E. & Cepko, C.L. NeuroD regulates multiple functions in the developing neural retina in rodent. Development 126, 23–36 (1999).

    CAS  PubMed  Google Scholar 

  35. Hatakeyama, J., Tomita, K., Inoue, T. & Kageyama, R. Roles of homeobox and bHLH genes in specification of a retinal cell type. Development 128, 1313–1322 (2001).

    CAS  PubMed  Google Scholar 

  36. Inoue, T. et al. Math3 and NeuroD regulate amacrine cell fate specification in the retina. Development 129, 831–842 (2002).

    CAS  PubMed  Google Scholar 

  37. Tomita, K., Moriyoshi, K., Nakanishi, S., Guillemot, F. & Kageyama, R. Mammalian achaete-scute and atonal homologs regulate neuronal versus glial fate determination in the central nervous system. EMBO J. 19, 5460–5472 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ezzeddine, Z.D., Yang, X., DeChiara, T., Yancopoulos, G. & Cepko, C.L. Postmitotic cells fated to become rod photoreceptors can be respecified by CNTF treatment of the retina. Development 124, 1055–1067 (1997).

    CAS  PubMed  Google Scholar 

  39. Blackshaw, S. & Snyder, S.H. Developmental expression pattern of phototransduction components in mammalian pineal implies a light-sensing function. J. Neurosci. 17, 8074–8082 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Bobola, N. et al. OTX2 homeodomain protein binds a DNA element necessary for interphotoreceptor retinoid binding protein gene expression. Mech. Dev. 82, 165–169 (1999).

    Article  CAS  PubMed  Google Scholar 

  41. Gamse, J.T. et al. Otx5 regulates genes that show circadian expression in the zebrafish pineal complex. Nat. Genet. 30, 117–121 (2002).

    Article  CAS  PubMed  Google Scholar 

  42. Plouhinec, J.L. et al. The Mammalian crx genes are highly divergent representatives of the otx5 gene family, a gnathostome orthology class of orthodenticle-related homeogenes involved in the differentiation of retinal photoreceptors and circadian entrainment. Mol. Biol. Evol. 20, 513–521 (2003).

    Article  CAS  PubMed  Google Scholar 

  43. Gu, H., Zou, Y.R. & Rajewsky, K. Independent control of immunoglobulin switch recombination at individual switch regions evidenced through Cre-loxP-mediated gene targeting. Cell 73, 1155–1164 (1993).

    Article  CAS  PubMed  Google Scholar 

  44. Laird, D.W. & Molday, R.S. Evidence against the role of rhodopsin in rod outer segment binding to RPE cells. Invest. Ophthalmol. Vis. Sci. 29, 419–428 (1988).

    CAS  PubMed  Google Scholar 

  45. Furukawa, T., Kozak, C.A. & Cepko, C.L. rax, a novel paired-type homeobox gene, shows expression in the anterior neural fold and developing retina. Proc. Natl. Acad. Sci. USA 94, 3088–3093 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Walther, C. & Gruss, P. Pax-6, a murine paired box gene, is expressed in the developing CNS. Development 113, 1435–1449 (1991).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank J. Miyazaki for the CAG-CAT-Z mice; R.S. Molday for the anti-rhodopsin antibody; K.Rajewsky for the Cre plasmid; P.V. Lippincott, A. Tani, T. Nakane, M. Murai and H. Yoshii for technical assistance; L.F. Parada, J.M. Graff, M. Henkemeyer and J. Jiang for their encouragement. This work was supported by Precursory Research for Embryonic Science and Technology (PRESTO), Dynamics of Development systems and Advanced Brain Science, Grant-in-Aid for Scientific Research on Priority Areas and Grant-in-Aid for Young Scientists (B).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takahisa Furukawa.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1.

A model for photoreceptor development and gene regulation. (a) Otx2 expression begins at a stage of priming of the photoreceptor cell fate. At a stage of fixation, Otx2 upregulates Crx, and once Crx is induced, it upregulates itself by autoregulation. Terminal differentiation occurs through upregulation of various photoreceptor-specific genes by Crx and possibly Otx2. (b) A part of common progenitor cells exits the cell cycle and chooses the photoreceptor lineage. Otx2 fixes the pre-committed precursors to the committed photoreceptor precursor status. If Otx2 is ablated before fixing to the committed status, the pre-committed precursors are induced to die or affected to change their cell fate into amacrine neurons. Crx induces terminal differentiation of the committed photoreceptor precursors into mature rods and cones. (PDF 255 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nishida, A., Furukawa, A., Koike, C. et al. Otx2 homeobox gene controls retinal photoreceptor cell fate and pineal gland development. Nat Neurosci 6, 1255–1263 (2003). https://doi.org/10.1038/nn1155

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1155

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing