Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Inhibition of Caenorhabditis elegans social feeding by FMRFamide-related peptide activation of NPR-1

Abstract

Social and solitary feeding in natural Caenorhabditis elegans isolates are associated with two alleles of the orphan G-protein-coupled receptor (GPCR) NPR-1: social feeders contain NPR-1 215F, whereas solitary feeders contain NPR-1 215V. Here we identify FMRFamide-related neuropeptides (FaRPs) encoded by the flp-18 and flp-21 genes as NPR-1 ligands and show that these peptides can differentially activate the NPR-1 215F and NPR-1 215V receptors. Multicopy overexpression of flp-21 transformed wild social animals into solitary feeders. Conversely, a flp-21 deletion partially phenocopied the npr-1(null) phenotype, which is consistent with NPR-1 activation by FLP-21 in vivo but also implicates other ligands for NPR-1. Phylogenetic studies indicate that the dominant npr-1 215V allele likely arose from an ancestral npr-1 215F gene in C. elegans. Our data suggest a model in which solitary feeding evolved in an ancestral social strain of C. elegans by a gain-of-function mutation that modified the response of NPR-1 to FLP-18 and FLP-21 ligands.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: npr-1 215F seems to be the ancestral npr-1 allele.
Figure 2: NPR-1 215F and NPR-1 215V differ in their responsiveness to FLP-21 and FLP-18 ligands.
Figure 3: Electrophysiological assays in C. elegans pharyngeal muscle also identify FLP-18 and FLP-21 peptides as ligands for NPR-1.
Figure 4: Expression patterns of flp-18 and flp-21.
Figure 5: Disrupting flp-21 enhances social feeding of npr-1 215F and npr-1 215V animals.
Figure 6: flp-21 overexpression suppresses social feeding in npr-1 215F-bearing wild social strains but not in npr-1 mutant animals.

Similar content being viewed by others

References

  1. Choe, J.C. & Crespi, B.J. (eds.) The Evolution of Social Behavior in Insects and Arachnids (Cambridge Univ. Press, Cambridge, 1997).

    Book  Google Scholar 

  2. Wilson, E.O. Sociobiology (Belknap Press, Cambridge, Massachusetts, 1975).

    Google Scholar 

  3. Greenspan, R.J. & Ferveur, J.F. Courtship in Drosophila. Annu. Rev. Genet. 34, 205–232 (2000).

    Article  CAS  PubMed  Google Scholar 

  4. Young, L.J., Lim, M.M., Gingrich, B. & Insel, T.R. Cellular mechanisms of social attachment. Horm. Behav. 40, 133–138 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. Krieger, M.J. & Ross, K.G. Identification of a major gene regulating complex social behavior. Science 295, 328–332 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. Osborne, K.A. et al. Natural behavior polymorphism due to a cGMP-dependent protein kinase of Drosophila. Science 277, 834–836 (1997).

    Article  CAS  PubMed  Google Scholar 

  7. de Bono, M. & Bargmann, C.I. Natural variation in a neuropeptide Y receptor homolog modifies social behavior and food response in C. elegans. Cell 94, 679–689 (1998).

    Article  CAS  PubMed  Google Scholar 

  8. Hodgkin, J. & Doniach, T. Natural variation and copulatory plug formation in Caenorhabditis elegans. Genetics 146, 149–164 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Cheung, A.H., Huang, R.R. & Strader, C.D. Involvement of specific hydrophobic, but not hydrophilic, amino acids in the third intracellular loop of the beta-adrenergic receptor in the activation of Gs. Mol. Pharmacol. 41, 1061–1065 (1992).

    CAS  PubMed  Google Scholar 

  10. Bluml, K., Mutschler, E. & Wess, J. Functional role of a cytoplasmic aromatic amino acid in muscarinic receptor-mediated activation of phospholipase C. J. Biol. Chem. 269, 11537–11541 (1994).

    CAS  PubMed  Google Scholar 

  11. Coates, J. & de Bono, M. Antagonistic pathways in neurons exposed to body fluid regulate social feeding in Caenorhabditis elegans. Nature 419, 925–929 (2002).

    Article  CAS  PubMed  Google Scholar 

  12. Fitch, D.H.A. & Thomas, W.K. in C. elegans II (eds. Riddle, D.L., Blumenthal, T., Meyer, B. & Priess, J.R.) 815–850 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, 1997).

    Google Scholar 

  13. Koch, R., van Luenen, H.G.A.M., van der Horst, M., Thijssen, K.L. & Plasterk, R.H.A. Single nucleotide polymorphisms in wild isolates of Caenorhabditis elegans. Genome Res. 10, 1690–1696 (2000).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Hewes, R.S. & Taghert, P.H. Neuropeptides and neuropeptide receptors in the Drosophila melanogaster genome. Genome Res. 11, 1126–1142 (2001).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Rajpara, S.M. et al. Identification and molecular cloning of a neuropeptide Y homolog that produces prolonged inhibition in Aplysia neurons. Neuron 9, 505–513 (1992).

    Article  CAS  PubMed  Google Scholar 

  16. Tensen, C.P. et al. Molecular cloning and characterization of an invertebrate homologue of a neuropeptide Y receptor. Eur. J. Neurosci. 10, 3409–3416 (1998).

    Article  CAS  PubMed  Google Scholar 

  17. Feng, G. et al. Functional characterization of a Neuropeptide F-like receptor from Drosophila melanogaster. Eur. J. Neurosci. 18, 227–238 (2003).

    Article  PubMed  Google Scholar 

  18. Hinuma, S. et al. New neuropeptides containing carboxy-terminal RFamide and their receptor in mammals. Nat. Cell Biol. 2, 703–708 (2000).

    Article  CAS  PubMed  Google Scholar 

  19. Li, C., Kim, K. & Nelson, L.S. FMRFamide-related neuropeptide gene family in Caenorhabditis elegans. Brain Res. 848, 26–34 (1999).

    Article  CAS  PubMed  Google Scholar 

  20. Li, C., Nelson, L., Kim, K., Nathoo, A. & Hart, A.C. Neuropeptide gene families in the nematode Caenorhabditis elegans. Ann. NY Acad. Sci. 897, 239–252 (1999).

    Article  CAS  PubMed  Google Scholar 

  21. Sun, L., Philipson, L.H. & Miller, R.J. Regulation of K+ and Ca2+ channels by a family of neuropeptide Y receptors. J. Pharmacol. Exp. Ther. 284, 625–632 (1998).

    CAS  PubMed  Google Scholar 

  22. Silverman, S.K., Lester, H.A. & Dougherty, D.A. Subunit stoichiometry of a heteromultimeric G protein–coupled inward-rectifier K+ channel. J. Biol. Chem. 271, 30524–30528 (1996).

    Article  CAS  PubMed  Google Scholar 

  23. Milligan, G., Marshall, F. & Rees, S. G16 as a universal G protein adapter: implications for agonist screening strategies. Trends Pharmacol. Sci. 17, 235–237 (1996).

    Article  CAS  PubMed  Google Scholar 

  24. Brundage, L. et al. Mutations in a C. elegans Gqα gene disrupt movement, egg-laying, and viability. Neuron 16, 999–1009 (1996).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Avery, L. & Horvitz, H.R. Pharyngeal pumping continues after laser killing of the pharyngeal nervous system of C. elegans. Neuron 3, 473–485 (1989).

    Article  CAS  PubMed  Google Scholar 

  26. Chalfie, M. et al. The neural circuit for touch sensitivity in Caenorhabditis elegans. J. Neurosci. 5, 956–964 (1985).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Mori, I. & Ohshima, Y. Neural regulation of thermotaxis in Caenorhabditis elegans. Nature 376, 344–348 (1995).

    Article  CAS  PubMed  Google Scholar 

  28. White, J.G., Southgate, E., Thomson, J.N. & Brenner, S. The structure of the nervous system of the nematode Caenorhabditis elegans. Phil. Trans. R. Soc. Lond. B. Biol. Sci. 314, 1–340 (1986).

    Article  CAS  Google Scholar 

  29. Bargmann, C.I. & Horvitz, H.R. Chemosensory neurons with overlapping functions direct chemotaxis to multiple chemicals in C. elegans. Neuron 7, 729–742 (1991).

    Article  CAS  PubMed  Google Scholar 

  30. Sambongi, Y. et al. Sensing of cadmium and copper ions by externally exposed ADL, ASE, and ASH neurons elicits avoidance response in Caenorhabditis elegans. Neuroreport 10, 753–757 (1999).

    Article  CAS  PubMed  Google Scholar 

  31. Bargmann, C.I. & Mori, I. in C. elegans II (eds. Riddle, D.L., Blumenthal, T., Meyer, B. & Priess, J.R.) 717–738 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, 1997).

    Google Scholar 

  32. Driscoll, M. & Kaplan, J. in C. elegans II (eds. Riddle, D.L., Blumenthal, T., Meyer, B. & Priess, J.R.) 645–678 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, 1997).

    Google Scholar 

  33. de Bono, M., Tobin, D., Davis, M.W., Avery, L. & Bargmann, C. Social feeding in Caenorhabditis elegans is induced by neurons that detect aversive stimuli. Nature 419, 899–903 (2002).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Kubiak, T.M. et al. Differential activation of “social” and “solitary” variants of the Caenorhabditis elegans G protein-coupled receptor NPR-1 by its cognate ligand AF9. J. Biol. Chem. 278, 33724–33729 (2003).

    Article  CAS  PubMed  Google Scholar 

  35. Cowden, C. & Stretton, A.O. Eight novel FMRFamide-like neuropeptides isolated from the nematode Ascaris suum. Peptides 16, 491–500 (1995).

    Article  CAS  PubMed  Google Scholar 

  36. Davis, R.E. & Stretton, A.O. The motornervous system of Ascaris: electrophysiology and anatomy of the neurons and their control by neuromodulators. Parasitology 113 (Suppl.) 97–117 (1996).

    Article  Google Scholar 

  37. Edison, A.S., Messinger, L.A. & Stretton, A.O. afp-1: a gene encoding multiple transcripts of a new class of FMRFamide-like neuropeptides in the nematode Ascaris suum. Peptides 18, 929–935 (1997).

    Article  CAS  PubMed  Google Scholar 

  38. Marks, N.J. et al. Isolation and preliminary biological assessment of AADGAPLIRFamide and SVPGVLRFamide from Caenorhabditis elegans. Biochem. Biophys. Res. Commun. 286, 1170–1176 (2001).

    Article  CAS  PubMed  Google Scholar 

  39. Nurrish, S., Segalat, L. & Kaplan, J.M. Serotonin inhibition of synaptic transmission: Gαo decreases the abundance of UNC-13 at release sites. Neuron 24, 231–242 (1999).

    Article  CAS  PubMed  Google Scholar 

  40. Denver, D.R., Morris, K. & Thomas, W.K. Phylogenetics in Caenorhabditis elegans: an analysis of divergence and outcrossing. Mol. Biol. Evol. 20, 393–400 (2003).

    Article  CAS  PubMed  Google Scholar 

  41. Sulston, J. & Hodgkin, J. in The Nematode Caenorhabditis elegans (ed. Wood, W. B.) 587–606 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, 1988).

    Google Scholar 

  42. Jansen, G., Hazendonk, E., Thijssen, K.L. & Plasterk, R.H. Reverse genetics by chemical mutagenesis in Caenorhabditis elegans. Nat. Genet. 17, 119–121 (1997).

    Article  CAS  PubMed  Google Scholar 

  43. Feng, G. et al. Cloning and functional characterization of a novel dopamine receptor from Drosophila melanogaster. J. Neurosci. 16, 3925–3933 (1996).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Van Renterghem, C. et al. GABA receptors induced in Xenopus oocytes by chick brain mRNA: evaluation of TBPS as a use-dependent channel blocker. Brain Res. 388, 21–31 (1987).

    CAS  PubMed  Google Scholar 

  45. Davis, M.W. et al. Mutations in the Caenorhabditis elegans Na,K-ATPase alpha-subunit gene, eat-6, disrupt excitable cell function. J. Neurosci. 15, 8408–8418 (1995).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Avery, L., Raizen, D. & Lockery, S. in Caenorhabditis elegans: Modern Biological Analysis of an Organism (eds. Epstein, H.F. & Shakes, D.C.) 251–269 (Academic Press, San Diego, 1995).

    Book  Google Scholar 

  47. Mello, C.C., Kramer, J.M., Stinchcomb, D. & Ambros, V. Efficient gene transfer in C. elegans: extrachromosomal maintenance and integration of transforming sequences. Embo J. 10, 3959–3970 (1991).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Clark, S.G., Lu, X. & Horvitz, H.R. The Caenorhabditis elegans locus lin-15, a negative regulator of a tyrosine kinase signaling pathway, encodes two different proteins. Genetics 137, 987–997 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Okkema, P.G., Harrison, S.W., Plunger, V., Aryana, A. & Fire, A. Sequence requirements for myosin gene expression and regulation in Caenorhabditis elegans. Genetics 135, 385–404 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Fukushige, T., Hawkins, M.G. & McGhee, J.D. The GATA-factor elt-2 is essential for formation of the Caenorhabditis elegans intestine. Dev. Biol. 198, 286–302 (1998).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to R. Plasterk for allowing us to screen his C. elegans deletion library; Y. Kohara for flp-21 cDNAs; S. Baird, H. Kagawa, B. Fixsen, W. Sudhaus, A. Fodor, V. Ambros and W. Wood for wild isolates of C. briggsae and C. remanei and the Caenorhabditis Genetics Center for strains used in this work. We thank S. Baird, N. Tremain, G. Robinson and M. Sokolowski for comments on the manuscript and C. Bargmann, H. Baylis, C. Ferguson and B. Olofsson for discussion. This work was supported by the Medical Research Council (M.d.B.), the Biotechnology and Biological Sciences Research Council (P.E.) and grants from the National Science Foundation and National Institutes of Health (C.L.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario de Bono.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1.

FaRPs encoded by flp-18 and flp-21 activate NPR-1. Membrane currents from Xenopus oocytes injected with cRNAs for GIRK 1, GIRK 2 and NPR-1 isoforms. Trace (a) is from an oocyte injected with NPR-1 215F cRNA, whereas in trace (b) the oocyte was injected with NPR-1 215V cRNA. The oocytes were clamped at -80 mV and the currents monitored before and after the application of a high K+ saline (open bars), during which time the peptide (1 μM) was also applied (solid bars). FLP-21 refers to the peptide GLGPRPLRFamide, whereas FLP-18 refers to the peptide EMPGVLRFamide. Both peptides activated GIRK currents in oocytes expressing the NPR-1 215V receptor, but the currents induced by FLP-21 are three times larger than those induced by FLP-18. In contrast, only FLP-21 activated GIRK currents in oocytes expressing the NPR-1 215F receptor. The two traces shown in each panel are from the same oocyte, with a gap of 400 s between each trace. (PDF 54 kb)

Supplementary Fig. 2.

Representative intracellular recordings from C. elegans pharyngeal muscle showing the effects of FLP-18 and FLP-21 peptides on action potential frequency in animals expressing npr-1 transgenes under the control of the heat-shock promoter. Both the FLP-21 (a and c) and the FLP-18 EMPGVLRFamide (b and d) peptides induced a larger inhibition of action potential frequency in heat-shocked (+HS) animals expressing NPR-1 compared to non-heat-shocked controls (-HS). In all examples peptides were applied at a concentration of 10-10 M for 1 minute, as indicated by the horizontal bar. The NPR-1 receptor isoform tested is indicated above each panel. 500 nM 5HT was included in the perfusate to give a background firing rate against which to measure inhibition. (PDF 120 kb)

Supplementary Methods (PDF 9 kb)

Supplementary Table 1 (PDF 30 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rogers, C., Reale, V., Kim, K. et al. Inhibition of Caenorhabditis elegans social feeding by FMRFamide-related peptide activation of NPR-1. Nat Neurosci 6, 1178–1185 (2003). https://doi.org/10.1038/nn1140

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1140

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing