Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Disruption of ErbB receptor signaling in adult non-myelinating Schwann cells causes progressive sensory loss

Abstract

Here we studied the role of signaling through ErbB-family receptors in interactions between unmyelinated axons and non-myelinating Schwann cells in adult nerves. We generated transgenic mice that postnatally express a dominant-negative ErbB receptor in non-myelinating but not in myelinating Schwann cells. These mutant mice present a progressive peripheral neuropathy characterized by extensive Schwann cell proliferation and death, loss of unmyelinated axons and marked heat and cold pain insensitivity. At later stages, C-fiber sensory neurons die by apoptosis, a process that may result from reduced GDNF (glial cell line–derived neurotrophic factor) expression in the sciatic nerve. Neuregulin 1 (NRG1)-ErbB signaling mediates, therefore, reciprocal interactions between non-myelinating Schwann cells and unmyelinated sensory neuron axons that are critical for Schwann cell and C-fiber sensory neuron survival. This study provides new insights into ErbB signaling in adult Schwann cells, the contribution of non-myelinating Schwann cells in maintaining trophic support of sensory neurons, and the possible role of disrupted ErbB signaling in peripheral sensory neuropathies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Time course and pattern of DN-ErbB expression in the postnatal sciatic nerve.
Figure 2: Death and proliferation of non-myelinating Schwann cells in transgenic mice.
Figure 3: DN-ErbB4 mice show a progressive impairment in responses to noxious thermal but not mechanical stimuli.
Figure 4: The number of Fos-immunoreactive nuclei in the ipsilateral lumbar dorsal horn in response to heat and capsaicin stimuli is reduced in DN-ErbB4 mice.
Figure 5: Disorganization of Remak bundles and loss of unmyelinated axons in DN-ErbB4 mice.
Figure 6: Sensory neuron loss in dorsal root ganglion (DRG) of DN-ErbB4 mice.
Figure 7: Decreased levels of GDNF protein in sciatic nerves of DN-ErbB4 mice.

Similar content being viewed by others

References

  1. Garratt, A.N., Britsch, S. & Birchmeier, C. Neuregulin, a factor with many functions in the life of a schwann cell. Bioessays 22, 987–996 (2000).

    Article  CAS  Google Scholar 

  2. Falls, D.L., Rosen, K.M., Corfas, G., Lane, W.S. & Fischbach, G.D. ARIA, a protein that stimulates acetylcholine receptor synthesis, is a member of the neu ligand family. Cell 72, 801–815 (1993).

    Article  CAS  Google Scholar 

  3. Holmes, W.E. et al. Identification of heregulin, a specific activator of p185erbB2. Science 256, 1205–1210 (1992).

    Article  CAS  Google Scholar 

  4. Peles, E. et al. Isolation of the neu/HER-2 stimulatory ligand: a 44 kDa glycoprotein that induces differentiation of mammary tumor cells. Cell 69, 205–216 (1992).

    Article  CAS  Google Scholar 

  5. Marchionni, M.A. et al. Glial growth factors are alternatively spliced erbB2 ligands expressed in the nervous system. Nature 362, 312–318 (1993).

    Article  CAS  Google Scholar 

  6. Chen, M.S. et al. Expression of multiple neuregulin transcripts in postnatal rat brains. J. Comp. Neurol. 349, 389–400 (1994).

    Article  CAS  Google Scholar 

  7. Corfas, G., Rosen, K.M., Aratake, H., Krauss, R. & Fischbach, G.D. Differential expression of ARIA isoforms in the rat brain. Neuron 14, 103–115 (1995).

    Article  CAS  Google Scholar 

  8. Cohen, J.A., Yachnis, A.T., Arai, M., Davis, J.G. & Scherer, S.S. Expression of the neu proto-oncogene by Schwann cells during peripheral nerve development and Wallerian degeneration. J. Neurosci. Res. 31, 622–634 (1992).

    Article  CAS  Google Scholar 

  9. Meyer, D. & Birchmeier, C. Multiple essential functions of neuregulin in development. Nature 378, 386–390 (1995).

    Article  CAS  Google Scholar 

  10. Syroid, D.E. et al. Cell death in the Schwann cell lineage and its regulation by neuregulin. Proc. Natl. Acad. Sci. USA 93, 9229–9234 (1996).

    Article  CAS  Google Scholar 

  11. Shah, N.M., Marchionni, M.A., Isaacs, I., Stroobant, P. & Anderson, D.J. Glial growth factor restricts mammalian neural crest stem cells to a glial fate. Cell 77, 349–360 (1994).

    Article  CAS  Google Scholar 

  12. Mahanthappa, N.K., Anton, E.S. & Matthew, W.D. Glial growth factor 2, a soluble neuregulin, directly increases Schwann cell motility and indirectly promotes neurite outgrowth. J. Neurosci. 16, 4673–4683 (1996).

    Article  CAS  Google Scholar 

  13. Garratt, A.N., Voiculescu, O., Topilko, P., Charnay, P. & Birchmeier, C. A dual role of erbB2 in myelination and in expansion of the schwann cell precursor pool. J. Cell Biol. 148, 1035–1046 (2000).

    Article  CAS  Google Scholar 

  14. Jessen, K.R., Morgan, L., Stewart, H.J. & Mirsky, R. Three markers of adult non-myelin-forming Schwann cells, 217c(Ran-1), A5E3 and GFAP: development and regulation by neuron-Schwann cell interactions. Development 109, 91–103 (1990).

    CAS  PubMed  Google Scholar 

  15. Brenner, M., Kisseberth, W.C., Su, Y., Besnard, F. & Messing, A. GFAP promoter directs astrocyte-specific expression in transgenic mice. J. Neurosci. 14, 1030–1037 (1994).

    Article  CAS  Google Scholar 

  16. Zhuo, L. et al. Live astrocytes visualized by green fluorescent protein in transgenic mice. Dev. Biol. 187, 36–42 (1997).

    Article  CAS  Google Scholar 

  17. Rio, C., Dikkes, P., Liberman, M.C. & Corfas, G. Glial fibrillary acidic protein expression and promoter activity in the inner ear of developing and adult mice. J. Comp. Neurol. 442, 156–162 (2002).

    Article  CAS  Google Scholar 

  18. Rio, C., Rieff, H.I., Qi, P., Khurana, T.S. & Corfas, G. Neuregulin and erbB receptors play a critical role in neuronal migration. Neuron 19, 39–50 (1997).

    Article  CAS  Google Scholar 

  19. Prevot, V. et al. Normal female sexual development requires neuregulin-erbB receptor signaling in hypothalamic astrocytes. J. Neurosci. 23, 230–239 (2003).

    Article  CAS  Google Scholar 

  20. Patten, B.A., Peyrin, J.M., Weinmaster, G. & Corfas, G. Sequential signaling through Notch1 and erbB receptors mediates radial glia differentiation. J. Neurosci. 23, 6132–6140 (2003).

    Article  CAS  Google Scholar 

  21. Julius, D. & Basbaum, A.I. Molecular mechanisms of nociception. Nature 413, 203–210 (2001).

    Article  CAS  Google Scholar 

  22. Caterina, M.J. et al. Impaired nociception and pain sensation in mice lacking the capsaicin receptor. Science 288, 306–313 (2000).

    Article  CAS  Google Scholar 

  23. Lee, D.E., Kim, S.J. & Zhuo, M. Comparison of behavioral responses to noxious cold and heat in mice. Brain Res. 845, 117–121 (1999).

    Article  CAS  Google Scholar 

  24. Ji, R.R., Befort, K., Brenner, G.J. & Woolf, C.J. ERK MAP kinase activation in superficial spinal cord neurons induces prodynorphin and NK-1 upregulation and contributes to persistent inflammatory pain hypersensitivity. J. Neurosci. 22, 478–485 (2002).

    Article  CAS  Google Scholar 

  25. Ji, R.R. & Rupp, F. Phosphorylation of transcription factor CREB in rat spinal cord after formalin-induced hyperalgesia: relationship to c-fos induction. J. Neurosci. 17, 1776–1785 (1997).

    Article  CAS  Google Scholar 

  26. Hunt, S.P., Pini, A. & Evan, G. Induction of c-fos-like protein in spinal cord neurons following sensory stimulation. Nature 328, 632–634 (1987).

    Article  CAS  Google Scholar 

  27. Bennett, D.L. et al. A distinct subgroup of small DRG cells express GDNF receptor components and GDNF is protective for these neurons after nerve injury. J. Neurosci. 18, 3059–3072 (1998).

    Article  CAS  Google Scholar 

  28. Averill, S., McMahon, S.B., Clary, D.O., Reichardt, L.F. & Priestley, J.V. Immunocytochemical localization of trkA receptors in chemically identified subgroups of adult rat sensory neurons. Eur. J. Neurosci. 7, 1484–1494 (1995).

    Article  CAS  Google Scholar 

  29. Snider, W.D. & McMahon, S.B. Tackling pain at the source: new ideas about nociceptors. Neuron 20, 629–632 (1998).

    Article  CAS  Google Scholar 

  30. Buj-Bello, A., Buchman, V.L., Horton, A., Rosenthal, A. & Davies, A.M. GDNF is an age-specific survival factor for sensory and autonomic neurons. Neuron 15, 821–828 (1995).

    Article  CAS  Google Scholar 

  31. Matheson, C.R. et al. Glial cell line-derived neurotrophic factor (GDNF) is a neurotrophic factor for sensory neurons: comparison with the effects of the neurotrophins. J. Neurobiol. 32, 22–32 (1997).

    Article  CAS  Google Scholar 

  32. Zwick, M. et al. Glial cell line-derived neurotrophic factor is a survival factor for isolectin B4-positive, but not vanilloid receptor 1-positive, neurons in the mouse. J. Neurosci. 22, 4057–4065 (2002).

    Article  CAS  Google Scholar 

  33. Hammarberg, H. et al. GDNF mRNA in Schwann cells and DRG satellite cells after chronic sciatic nerve injury. Neuroreport 7, 857–860 (1996).

    Article  CAS  Google Scholar 

  34. Naveilhan, P., ElShamy, W.M. & Ernfors, P. Differential regulation of mRNAs for GDNF and its receptors Ret and GDNFR alpha after sciatic nerve lesion in the mouse. Eur. J. Neurosci. 9, 1450–1460 (1997).

    Article  CAS  Google Scholar 

  35. Trupp, M., Belluardo, N., Funakoshi, H. & Ibanez, C.F. Complementary and overlapping expression of glial cell line-derived neurotrophic factor (GDNF), c-ret proto-oncogene, and GDNF receptor-alpha indicates multiple mechanisms of trophic actions in the adult rat CNS. J. Neurosci. 17, 3554–3567 (1997).

    Article  CAS  Google Scholar 

  36. Brown, M.J., Martin, J.R. & Asbury, A.K. Painful diabetic neuropathy. A morphometric study. Arch. Neurol. 33, 164–171 (1976).

    Article  CAS  Google Scholar 

  37. Dutsch, M. et al. Small fiber dysfunction predominates in Fabry neuropathy. J. Clin. Neurophysiol. 19, 575–586 (2002).

    Article  CAS  Google Scholar 

  38. Barbieri, S. et al. Small fibre involvement in neuropathy associated with IgG, IgA and IgM monoclonal gammopathy. Electromyogr. Clin. Neurophysiol. 35, 39–44 (1995).

    CAS  PubMed  Google Scholar 

  39. Crone, S.A., Negro, A., Trumpp, A., Giovannini, M. & Lee, K.F. Colonic epithelial expression of ErbB2 is required for postnatal maintenance of the enteric nervous system. Neuron 37, 29–40 (2003).

    Article  CAS  Google Scholar 

  40. Scherer, S.S. & Salzer, J.L. Axon-Schwann cell interactions in peripheral nerve regeneration. in Glial Cell Development (eds. Jessen, K.R. & Richardson, W.D.) 165–198 (Oxford: Bios Scientific Publishers, 1996).

    Google Scholar 

  41. Lewis, S.E. et al. A role for HSP27 in sensory neuron survival. J. Neurosci. 19, 8945–8953 (1999).

    Article  CAS  Google Scholar 

  42. Tandrup, T., Woolf, C.J. & Coggeshall, R.E. Delayed loss of small dorsal root ganglion cells after transection of the rat sciatic nerve. J. Comp. Neurol. 422, 172–180 (2000).

    Article  CAS  Google Scholar 

  43. Benn, S.C. et al. Hsp27 upregulation and phosphorylation is required for injured sensory and motor neuron survival. Neuron 36, 45–56 (2002).

    Article  CAS  Google Scholar 

  44. Johnson, E.M. Jr., Taniuchi, M. & DiStefano, P.S. Expression and possible function of nerve growth factor receptors on Schwann cells. Trends Neurosci. 11, 299–304 (1988).

    Article  CAS  Google Scholar 

  45. Widenfalk, J., Lundstromer, K., Jubran, M., Brene, S. & Olson, L. Neurotrophic factors and receptors in the immature and adult spinal cord after mechanical injury or kainic acid. J. Neurosci. 21, 3457–3475 (2001).

    Article  CAS  Google Scholar 

  46. Sanchez, R.M. et al. Decreased glutamate receptor 2 expression and enhanced epileptogenesis in immature rat hippocampus after perinatal hypoxia-induced seizures. J. Neurosci. 21, 8154–8163 (2001).

    Article  CAS  Google Scholar 

  47. Ji, R.R., Baba, H., Brenner, G.J. & Woolf, C.J. Nociceptive-specific activation of ERK in spinal neurons contributes to pain hypersensitivity. Nat. Neurosci. 2, 1114–1119 (1999).

    Article  CAS  Google Scholar 

  48. Pover, C.M., Orr, M.H., Jr. & Coggeshall, R.E. A method for producing unbiased histograms of neuronal profile sizes. J. Neurosci. Methods 49, 123–131 (1993).

    Article  CAS  Google Scholar 

  49. Coggeshall, R.E. & Lekan, H.A. Methods for determining numbers of cells and synapses: a case for more uniform standards of review. J. Comp. Neurol. 364, 6–15 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Supported by National Institutes of Health grants: NINDS R01 NS35884 (G.C.), NIDCD R01 DC04820 (G.C.), NS40698 (R.R.J.), NS38253 (C.J.W.) and NS39518 (C.J.W.). Also supported by the EJLB Foundation (G.C.) and a Mental Retardation Research Center grant NIH P30-HD 18655 (G.C.). We thank N. Akhtar for technical assistance, B. Patten for comments, K. Stankovic for help with some experiments and S. Ito and the Harvard Medical School EM facility for their assistance with EM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriel Corfas.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, S., Rio, C., Ji, RR. et al. Disruption of ErbB receptor signaling in adult non-myelinating Schwann cells causes progressive sensory loss. Nat Neurosci 6, 1186–1193 (2003). https://doi.org/10.1038/nn1139

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1139

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing