Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Limbic corticotropin-releasing hormone receptor 1 mediates anxiety-related behavior and hormonal adaptation to stress

Abstract

Corticotropin-releasing hormone (CRH) is centrally involved in coordinating responses to a variety of stress-associated stimuli. Recent clinical data implicate CRH in the pathophysiology of human affective disorders. To differentiate the CNS pathways involving CRH and CRH receptor 1 (Crhr1) that modulate behavior from those that regulate neuroendocrine function, we generated a conditional knockout mouse line (Crhr1loxP/loxPCamk2a-cre) in which Crhr1 function is inactivated postnatally in anterior forebrain and limbic brain structures, but not in the pituitary. This leaves the hypothalamic-pituitary-adrenocortical (HPA) system intact. Crhr1loxP/loxPCamk2a-cre mutants showed reduced anxiety, and the basal activity of their HPA system was normal. In contrast to Crhr1 null mutants, conditional mutants were hypersensitive to stress corticotropin and corticosterone levels remained significantly elevated after stress. Our data clearly show that limbic Crhr1 modulates anxiety-related behavior and that this effect is independent of HPA system function. Furthermore, we provide evidence for a new role of limbic Crhr1 in neuroendocrine adaptation to stress.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Generation of mice deficient for Crhr1 in the limbic system.
Figure 2: Verification of the region-specific Crhr1 knockout.
Figure 3: Reduced anxiety-related behavior in Crhr1loxP/loxPCamk2a-cre conditional mutants (males, age 3–5 months).
Figure 4: Plasma ACTH levels under basal conditions and following different durations of restraint stress.
Figure 5: Plasma corticosterone levels under basal conditions and following different durations of restraint stress.
Figure 6: Expression of mineralocorticoid receptor (MR; ad) and Crh (eh) under basal conditions and after stress in Crhr1loxP/loxP controls and conditional Crhr1loxP/loxPCamk2a-cre mutants.

Similar content being viewed by others

References

  1. Owens, M.J. & Nemeroff, C.B. Physiology and pharmacology of corticotropin releasing factor. Pharmacol. Rev. 43, 425–473 (1991).

    CAS  PubMed  Google Scholar 

  2. Holsboer, F. The rationale for the corticotropin-releasing hormone receptor (CRH-R) antagonists to treat depression and anxiety. J. Psychiatr. Res. 33, 181–214 (1999).

    Article  CAS  Google Scholar 

  3. Brunson, K.L., Avishai-Eliner, S., Hatalski, C.G. & Baram, T.Z. Neurobiology of the stress response early in life: evolution of a concept and the role of corticotropin-releasing hormone. Mol. Psychiatry 6, 647–656 (2001).

    Article  CAS  Google Scholar 

  4. Avishai-Eliner, S., Brunson, K.L., Sandman, C.A. & Baram, T.Z. Stressed-out, or in (utero)? Trends Neurosci. 25, 518–524 (2002).

    Article  CAS  Google Scholar 

  5. Caldji, C., Diorio, J. & Meaney, M.J. Variations of maternal care in infancy regulate the development of stress reactivity. Biol. Psychiatry 48, 1164–1174 (2000).

    Article  CAS  Google Scholar 

  6. Liu, D. et al. Maternal care, hippocampal glucocorticoid receptors, and the hypothalamic-pituitary-adrenal response to stress. Science 277, 1659–1662 (1997).

    Article  CAS  Google Scholar 

  7. Zobel, A.W. et al. Effects of the high-affinity corticotropin-releasing hormone receptor antagonist R121919 in major depression: the first 20 patients treated. J. Psychiatr. Res. 34, 171–181 (2000).

    Article  CAS  Google Scholar 

  8. Timpl, P. et al. Impaired stress response and reduced anxiety in mice lacking a functional corticotropin-releasing hormone receptor 1. Nat. Genet. 19, 162–166 (1998).

    Article  CAS  Google Scholar 

  9. Preil, J. et al. Regulation of the hypothalamic-pituitary-adrenocortical system in mice deficient for CRH receptors 1 and 2. Endocrinology 142, 4946–4955 (2001).

    Article  CAS  Google Scholar 

  10. Müller, M.B. et al. Selective activation of the hypothalamic vasopressinergic system in mice deficient for the corticotropin-releasing hormone receptor 1 is dependent on glucocorticoids. Endocrinology 141, 4262–4269 (2000).

    Article  Google Scholar 

  11. Dunn, A.J. & Berridge, C.W. Physiological and behavioral responses to corticotropin-releasing factor administration: is CRF a mediator of anxiety or stress responses? Brain Res. Rev. 15, 71–100 (1990).

    Article  CAS  Google Scholar 

  12. Sillaber, I. et al. Enhanced and delayed stress-induced alcohol drinking in mice lacking functional CRH1 receptors. Science 296, 931–933 (2002).

    Article  CAS  Google Scholar 

  13. Liebsch, G. et al. Chronic infusion of a CRH1 receptor antisense oligodeoxynucleotide into the central nucleus of the amygdala reduced anxiety-related behavior in socially defeated rats. Reg. Peptides 59, 229–239 (1995).

    Article  CAS  Google Scholar 

  14. Smith, G.W. et al. Corticotropin releasing factor receptor 1-deficient mice display decreased anxiety, impaired stress response, and aberrant neuroendocrine development. Neuron 20, 1093–1102 (1998).

    Article  CAS  Google Scholar 

  15. Joels, M. & de Kloet, E.R. Control of neuronal excitability by corticosteroid hormones. Trends Neurosci. 15, 25–30 (1992).

    Article  CAS  Google Scholar 

  16. Korte, S.M., Korte-Bouws, G.A., Koob, G.F., De Kloet, E.R. & Bohus, B. Mineralocorticoid and glucocorticoid receptor antagonists in animal models of anxiety. Pharmacol. Biochem. Behav. 54, 261–267 (1996).

    Article  CAS  Google Scholar 

  17. Korte, S.M. Corticosteroids in relation to fear, anxiety and psychopathology. Neurosci. Biobehav. Rev. 25, 117–142 (2001).

    Article  CAS  Google Scholar 

  18. Tronche, F. et al. Disruption of the glucocorticoid receptor gene in the nervous system results in reduced anxiety. Nat. Genet. 23, 99–103 (1999).

    Article  CAS  Google Scholar 

  19. Lewandoski, M. Conditional control of gene expression in the mouse. Nat. Rev. Genet. 2, 743–755 (2001).

    Article  CAS  Google Scholar 

  20. Minichiello, L. et al. Essential role of trkB receptors in hippocampus-mediated learning. Neuron 24, 401–414 (1999).

    Article  CAS  Google Scholar 

  21. Solà, C., Tusell, J.M. & Serratosa, J. Comparative study of the distribution of calmodulin kinase II and calcineurin in the mouse brain. J. Neurosci. Res. 57, 651–662 (1999).

    Article  Google Scholar 

  22. Chen, Y., Brunson, K., Müller, M.B., Cariaga, W. & Baram, T.Z. Immunocytochemical distribution of corticotropin-releasing hormone type-1 (CRF1)–like immunoreactivity in the mouse brain: light microscopy analysis using an antibody directed against the C-terminus. J. Comp. Neurol. 420, 305–323 (2000).

    Article  CAS  Google Scholar 

  23. Davis, M. & Whalen, P.J. The amygdala: vigilance and emotion. Mol. Psychiatry 6, 13–34 (2001).

    Article  CAS  Google Scholar 

  24. Lobe, C.G. et al. Z/AP, a double reporter for Cre-mediated recombination. Dev. Biol. 208, 281–292 (1999).

    Article  CAS  Google Scholar 

  25. Van Pett, K. et al. Distribution of mRNAs encoding CRF receptors in brain and pituitary of rat and mouse. J. Comp. Neurol. 428, 191–212 (2000).

    Article  CAS  Google Scholar 

  26. Hascoet, M., Bourin, M. & Dhonnchadhda, B.A.N. The mouse light-dark paradigm: a review. Prog. Neurosychopharmacol. Biol. Psychiatry 25, 141–166 (2001).

    Article  CAS  Google Scholar 

  27. Rodgers, J.I. & Dalvi, A. Anxiety, defence and the elevated plus-maze. Neurosci. Biobehav. Rev. 21, 801–810 (1997).

    Article  CAS  Google Scholar 

  28. Cole, J.C. & Rodgers, R.J. Ethological comparison of the effects of diazepam and acute/chronic imipramine on the behaviour of mice in the elevated plus-maze. Pharmacol. Biochem. Behav. 52, 473–478 (1995).

    Article  CAS  Google Scholar 

  29. Liebsch, G., Landgraf, R., Engelmann, M., Lorscher, P. & Holsboer, F. Differential behavioural effects of chronic infusion of CRH 1 and CRH 2 receptor antisense oligonucleotides into the rat brain. J. Psychiatr. Res. 33, 153–163 (1999).

    Article  CAS  Google Scholar 

  30. Keck, M.E. et al. The anxiolytic effect of the CRH1 receptor antagonist R121919 depends on innate emotionality in rats. Eur. J. Neurosci. 13, 373–380 (2001).

    Article  CAS  Google Scholar 

  31. Joels, M. Corticosteroid actions in the hippocampus. J. Neuroendocrinol. 13, 657–669 (2001).

    Article  CAS  Google Scholar 

  32. Gray, T.S. & Bingaman, E.W. The amygdala: corticotropin-releasing factor, steroids and stress. Crit. Rev. Neurobiol. 10, 155–168 (1996).

    Article  CAS  Google Scholar 

  33. López, J.F., Akil, H. & Watson, S. Neural circuits mediating stress. Biol. Psychiatry 46, 1461–1471 (1999).

    Article  Google Scholar 

  34. Herman, J.P. & Cullinan, W.E. Neurocircuitry of stress: central control of the hypothalamic-pituitary-adrenocortical axis. Trends Neurosci. 20, 78–84 (1997).

    Article  CAS  Google Scholar 

  35. Herman, J.P., Schafer, M.K., Young, E.A., Akil, H. & Watson, S.J. Selective forebrain fiber tract lesions implicate ventral hippocampal structures in tonic regulation of paraventricular nucleus corticotropin-releasing hormone (CRH) and arginine vasopressin (AVP) mRNA expression. Brain Res. 592, 228–238 (1992).

    Article  CAS  Google Scholar 

  36. de Kloet, E.R. & Reul, J.M.H.M. Feedback action and tonic influence of corticosteroids on brain function: a concept arising from the heterogeneity of brain receptor systems. Psychoneuroendocrinology 12, 83–105 (1987).

    Article  CAS  Google Scholar 

  37. Gesing, A. et al. Psychological stress increases hippocampal mineralocorticoid receptor levels: involvement of corticotropin-releasing hormone. J. Neurosci. 21, 4822–4829 (2001).

    Article  CAS  Google Scholar 

  38. Raadsheer, F.C., Hoogendijk, W.J.G., Stam, F.C., Tilders, F.J.H. & Swaab, D.F. Increased number of corticotropin-releasing hormone expressing neurons in the hypothalamic paraventricular nucleus of depressed patients. Neuroendocrinology 60, 436–444 (1994).

    Article  CAS  Google Scholar 

  39. Raadsheer, F.C. et al. Corticotropin-releasing hormone levels in the paraventricular nucleus of patients with Alzheimer's disease and depression. Am. J. Psychiatry 152, 1372–1376 (1995).

    Article  CAS  Google Scholar 

  40. López, J.F., Chalmers, D.T., Little, K.Y. & Watson, S.J. Regulation of serotonine1A, glucocorticoid and mineralocorticoid receptor in rat and human hippocampus: implications for the neurobiology of depression. Biol. Psychiatry 43, 547–573 (1998).

    Article  Google Scholar 

  41. Holsboer, F. The corticosteroid receptor hypothesis of depression. Neuropsychopharmacology 23, 477–501 (2000).

    Article  CAS  Google Scholar 

  42. Hanks, M., Wurst, W., Anson-Cartwright, L., Auerbach, A.B. & Joyner, A.L. Rescue of the En-1 mutant phenotype by replacement of En-1 with En-2. Science 269, 679–682 (1995).

    Article  CAS  Google Scholar 

  43. Hill, D.P. & Wurst, W. Screening for novel pattern formation genes using gene trap approaches. Methods Enzymol. 225, 664–668 (1993).

    Article  CAS  Google Scholar 

  44. Kresse, A., Jacobowitz, D.M. & Skofitsch, G. Detailed mapping of CGRP mRNA expression in the rat central nervous system: comparison with previous immunocytochemical findings. Brain Res. Bull. 36, 261–274 (1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank A. Nagy and C. Lobe for providing the Z/AP mouse line, G. Schütz for the antibody against Cre; M.E. Keck and C.T. Wotjak for critical reading of the manuscript, A. Yassouridis for statistical advice, and S. Alam, S. Bourier, C. Ehmann and B. Klaedtke for technical assistance. This work was partly supported by a grant from the Volkswagen Foundation (to F.H. and W.W.) and the Bundesministerium für Bildung und Forschung (BMBF, to W.W.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Wurst.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1.

Plasma ACTH and corticosterone levels in female mice under basal conditions and following stress. '*' denotes statistical significance at α = 0.05. (PDF 17 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Müller, M., Zimmermann, S., Sillaber, I. et al. Limbic corticotropin-releasing hormone receptor 1 mediates anxiety-related behavior and hormonal adaptation to stress. Nat Neurosci 6, 1100–1107 (2003). https://doi.org/10.1038/nn1123

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1123

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing