Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Acute changes in short-term plasticity at synapses with elevated levels of neuronal calcium sensor-1

Abstract

Short-term synaptic plasticity is a defining feature of neuronal activity, but the underlying molecular mechanisms are poorly understood. Depression of synaptic activity might be due to limited vesicle availability, whereas facilitation is thought to result from elevated calcium levels. However, it is unclear whether the strength and direction (facilitation versus depression) of plasticity at a given synapse result from preexisting synaptic strength or whether they are regulated by separate mechanisms. Here we show, in rat hippocampal cell cultures, that increases in the calcium binding protein neuronal calcium sensor-1 (NCS-1) can switch paired-pulse depression to facilitation without altering basal synaptic transmission or initial neurotransmitter release probability. Facilitation persisted during high-frequency trains of stimulation, indicating that NCS-1 can recruit 'dormant' vesicles. Our results suggest that NCS-1 acts as a calcium sensor for short-term plasticity by facilitating neurotransmitter output independent of initial release. We conclude that separate mechanisms are responsible for determining basal synaptic strength and short-term plasticity.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Pair recordings from reciprocally connected neurons reveal a switch from paired-pulse depression to facilitation at NCS-1-transfected synapses.
Figure 2: NCS-1 expression confers facilitation, but does not affect basal neurotransmitter release.
Figure 3: NCS-1 expression correlates with short-term plasticity.
Figure 4: Synaptic responses from NCS-1-transfected synapses remain facilitated during high-frequency stimulus trains.
Figure 5: Neither calcium current amplitudes nor kinetics are altered in NCS-1-transfected neurons.
Figure 6: Rate of MK-801 blockade is not altered at NCS-1-transfected synapses.
Figure 7: Current clamp experiments show that NCS-1 confers more reliable postsynaptic firing.

References

  1. 1

    Tsodyks, M.V. & Markram, H. The neural code between neocortical pyramidal neurons depends on neurotransmitter release probability. Proc. Natl. Acad. Sci. USA 94, 719–723 (1997).

    CAS  Article  Google Scholar 

  2. 2

    Buonomano, D.V. Decoding temporal information: a model based on short-term synaptic plasticity. J. Neurosci. 20, 1129–1141 (2000).

    CAS  Article  Google Scholar 

  3. 3

    Marder, E. From biophysics to models of network function. Annu. Rev. Neurosci. 21, 25–45 (1998).

    CAS  Article  Google Scholar 

  4. 4

    Atwood, H.L. & Karunanithi, S. Diversification of synaptic strength: presynaptic elements. Nat. Rev. Neurosci. 3, 497–516 (2002).

    CAS  Article  Google Scholar 

  5. 5

    Stevens, C.F. & Tsujimoto, T. Estimates for the pool size of releasable quanta at a single central synapse and for the time required to refill the pool. Proc. Natl. Acad. Sci. USA 92, 846–849 (1995).

    CAS  Article  Google Scholar 

  6. 6

    Rosenmund, C. & Stevens, C.F. Definition of the readily releasable pool of vesicles at hippocampal synapses. Neuron 16, 1197–1207 (1996).

    CAS  Article  Google Scholar 

  7. 7

    Waldeck, R.F., Pereda, A. & Faber, D.S. Properties and plasticity of paired-pulse depression at a central synapse. J. Neurosci. 20, 5312–5320 (2000).

    CAS  Article  Google Scholar 

  8. 8

    Zucker, R.S. Calcium- and activity-dependent synaptic plasticity. Curr. Opin. Neurobiol. 9, 305–313 (1999).

    CAS  Article  Google Scholar 

  9. 9

    Katz, B. & Miledi, R. The role of calcium in neuromuscular facilitation. J. Physiol. (Lond.) 195, 481–492 (1968).

    CAS  Article  Google Scholar 

  10. 10

    Felmy, F., Neher, E. & Schneggenburger, R. Probing the Intracellular Calcium Sensitivity of Transmitter Release during Synaptic Facilitation. Neuron 37, 801–811 (2003).

    CAS  Article  Google Scholar 

  11. 11

    Rozov, A., Burnashev, N., Sakmann, B. & Neher, E. Transmitter release modulation by intracellular Ca2+ buffers in facilitating and depressing nerve terminals of pyramidal cells in layer 2/3 of the rat neocortex indicates a target cell-specific difference in presynaptic calcium dynamics. J. Physiol. 531, 807–826 (2001).

    CAS  Article  Google Scholar 

  12. 12

    Blatow, M., Caputi, A., Burnashev, N., Monyer, H. & Rozov, A. Ca2+ buffer saturation underlies paired pulse facilitation in calbindin-d28k-containing terminals. Neuron 38, 79–88 (2003).

    CAS  Article  Google Scholar 

  13. 13

    Atluri, P.P. & Regehr, W.G. Determinants of the time course of facilitation at the granule cell to Purkinje cell synapse. J. Neurosci. 16, 5661–5671 (1996).

    CAS  Article  Google Scholar 

  14. 14

    Zucker, R.S. & Regehr, W.G. Short-term synaptic plasticity. Annu. Rev. Physiol. 64, 355–405 (2002).

    CAS  Article  Google Scholar 

  15. 15

    Pongs, O. et al. Frequenin: a novel calcium-binding protein that modulates synaptic efficacy in the Drosophila nervous system. Neuron 11, 15–28 (1993).

    CAS  Article  Google Scholar 

  16. 16

    Burgoyne, R.D. & Weiss, J.L. The neuronal calcium sensor family of Ca2+-binding proteins. Biochem. J. 353, 1–12 (2001).

    CAS  Article  Google Scholar 

  17. 17

    Olafsson, P., Wang, T. & Lu, B. Molecular cloning and functional characterization of the Xenopus Ca2+-binding protein frequenin. Proc. Natl. Acad. Sci. USA 92, 8001–8005 (1995).

    CAS  Article  Google Scholar 

  18. 18

    Tsujimoto, T., Jeromin, A., Saitoh, N., Roder, J.C. & Takahashi, T. Neuronal calcium sensor 1 and activity-dependent facilitation of P/Q-type calcium currents at presynaptic nerve terminals. Science 295, 2276–2279 (2002).

    CAS  Article  Google Scholar 

  19. 19

    Tong, G. & Jahr, C.E. Multivesicular release from excitatory synapses of cultured hippocampal neurons. Neuron 12, 51–59 (1994).

    CAS  Article  Google Scholar 

  20. 20

    Wilcox, K.S. & Dichter, M.A. Paired pulse depression in cultured hippocampal neurons is due to a presynaptic mechanism independent of GABAB autoreceptor activation. J. Neurosci. 14, 1775–1788 (1994).

    CAS  Article  Google Scholar 

  21. 21

    Debanne, D., Geahwiler, B.H. & Thompson, S.M. Long-term synaptic plasticity between pairs of individual CA3 pyramidal cells in rat hippocampal slice cultures. J. Physiol. (Lond.) 507, 237–247 (1998).

    CAS  Article  Google Scholar 

  22. 22

    Weiss, J.L., Archer, D.A. & Burgoyne, R.D. Neuronal Ca2+ sensor-1/frequenin functions in an autocrine pathway regulating Ca2+ channels in bovine adrenal chromaffin cells. J. Biol. Chem. 275, 40082–40087 (2000).

    CAS  Article  Google Scholar 

  23. 23

    Rajebhosale, M., Greenwood, S., Vidugiriene, J., Jeromin, A. & Hilfiker, S. Phosphatidylinositol 4-OH kinase is a downstream target of neuronal calcium sensor-1 in enhancing exocytosis in neuroendocrine cells. J. Biol. Chem. 278, 6075–6084 (2003).

    CAS  Article  Google Scholar 

  24. 24

    McFerran, B.W., Weiss, J.L. & Burgoyne, R.D. Neuronal Ca2+ sensor 1. Characterization of the myristoylated protein, its cellular effects in permeabilized adrenal chromaffin cells, Ca2+-independent membrane association, and interaction with binding proteins, suggesting a role in rapid Ca2+ signal transduction. J. Biol. Chem. 274, 30258–30265 (1999).

    CAS  Article  Google Scholar 

  25. 25

    Jinno, S., Jeromin, A., Roder, J. & Kosaka, T. Immunocytochemical localization of neuronal calcium sensor-1 in the hippocampus and cerebellum of the mouse, with special reference to presynaptic terminals. Neuroscience 113, 449–461 (2002).

    CAS  Article  Google Scholar 

  26. 26

    Cummings, D.D., Wilcox, K.S. & Dichter, M.A. Calcium-dependent paired-pulse facilitation of miniature EPSC frequency accompanies depression of EPSCs at hippocampal synapses in culture. J. Neurosci. 16, 5312–5323 (1996).

    CAS  Article  Google Scholar 

  27. 27

    Weiss, J.L. & Burgoyne, R.D. Voltage-independent inhibition of P/Q-type Ca2+ channels in adrenal chromaffin cells via a neuronal Ca2+ sensor-1-dependent pathway involves Src family tyrosine kinase. J. Biol. Chem. 276, 44804–44811 (2001).

    CAS  Article  Google Scholar 

  28. 28

    Wheeler, D.B., Randall, A. & Tsien, R.W. Roles of N-type and Q-type Ca2+ channels in supporting hippocampal synaptic transmission. Science 264, 107–111 (1994).

    CAS  Article  Google Scholar 

  29. 29

    Huettner, J.E. & Bean, B.P. Block of N-methyl-D-aspartate-activated current by the anticonvulsant MK-801: selective binding to open channels. Proc. Natl. Acad. Sci. USA 85, 1307–1311 (1988).

    CAS  Article  Google Scholar 

  30. 30

    Hessler, N.A., Shirke, A.M. & Malinow, R. The probability of transmitter release at a mammalian central synapse. Nature 366, 569–572 (1993).

    CAS  Article  Google Scholar 

  31. 31

    Rosenmund, C., Clements, J.D. & Westbrook, G.L. Nonuniform probability of glutamate release at a hippocampal synapse. Science 262, 754–757 (1993).

    CAS  Article  Google Scholar 

  32. 32

    McFerran, B.W., Graham, M.E. & Burgoyne, R.D. Neuronal Ca2+ sensor 1, the mammalian homologue of frequenin, is expressed in chromaffin and PC12 cells and regulates neurosecretion from dense-core granules. J. Biol. Chem. 273, 22768–22772 (1998).

    CAS  Article  Google Scholar 

  33. 33

    Koizumi, S. et al. Mechanisms underlying the neuronal calcium sensor-1-evoked enhancement of exocytosis in PC12 cells. J. Biol. Chem. 277, 30315–30324 (2002).

    CAS  Article  Google Scholar 

  34. 34

    Rivosecchi, R., Pongs, O., Theil, T. & Mallart, A. Implication of frequenin in the facilitation of transmitter release in Drosophila. J. Physiol. 474, 223–232 (1994).

    CAS  Article  Google Scholar 

  35. 35

    Cox, J.A. et al. Cation binding and conformational changes in VILIP and NCS-1, two neuron-specific calcium-binding proteins. J. Biol. Chem. 269, 32807–32813 (1994).

    CAS  PubMed  Google Scholar 

  36. 36

    Zucker, R.S. Increased Ca2+ buffering enhances Ca2+-dependent process. J. Physiol. 531, 583 (2001).

    CAS  Article  Google Scholar 

  37. 37

    Vyshedskiy, A., Allana, T. & Lin, J.W. Analysis of presynaptic Ca2+ influx and transmitter release kinetics during facilitation at the inhibitor of the crayfish neuromuscular junction. J. Neurosci. 20, 6326–6332 (2000).

    CAS  Article  Google Scholar 

  38. 38

    Salin, P.A., Scanziani, M., Malenka, R.C. & Nicoll, R.A. Distinct short-term plasticity at two excitatory synapses in the hippocampus. Proc. Natl. Acad. Sci. USA 93, 13304–13309 (1996).

    CAS  Article  Google Scholar 

  39. 39

    Genin, A. et al. Regulated expression of the neuronal calcium sensor-1 gene during long-term potentiation in the dentate gyrus in vivo. Neuroscience 106, 571–577 (2001).

    CAS  Article  Google Scholar 

  40. 40

    Koh, P.O. et al. Up-regulation of neuronal calcium sensor-1 (NCS-1) in the prefrontal cortex of schizophrenic and bipolar patients. Proc. Natl. Acad. Sci. USA 100, 313–317 (2003).

    CAS  Article  Google Scholar 

  41. 41

    Ryan, T.A. et al. The kinetics of synaptic vesicle recycling measured at single presynaptic boutons. Neuron 11, 713–724 (1993).

    CAS  Article  Google Scholar 

  42. 42

    Threadgill, R., Bobb, K. & Ghosh, A. Regulation of dendritic growth and remodeling by Rho, Rac and Cdc42. Neuron 19, 625–634 (1997).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank B. Hargrove for technical assistance and all members of the Schweizer lab. We are also grateful to D. Buonomano, A. Dempsey, J.L. Feldman, M. Klein, N.A. Lambert, K.C. Martin, T.S. Otis, T.J. O'Dell, S.L. Smith and S.A. White for valuable and encouraging discussions, and H.T. Blair for help with statistics. This work was supported by grants from the Whitehall Foundation and the National Institutes of Health (NS41317) to F.E.S.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Felix E Schweizer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sippy, T., Cruz-Martín, A., Jeromin, A. et al. Acute changes in short-term plasticity at synapses with elevated levels of neuronal calcium sensor-1. Nat Neurosci 6, 1031–1038 (2003). https://doi.org/10.1038/nn1117

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing