Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Plasticity of calcium channels in dendritic spines

Abstract

Voltage-sensitive Ca2+ channels (VSCCs) constitute a major source of calcium ions in dendritic spines, but their function is unknown. Here we show that R-type VSCCs in spines of rat CA1 pyramidal neurons are depressed for at least 30 min after brief trains of back-propagating action potentials. Populations of channels in single spines are depressed stochastically and synchronously, independent of channels in the parent dendrite and other spines, implying that depression is the result of signaling restricted to individual spines. Induction of VSCC depression blocks theta-burst-induced long-term potentiation (LTP), indicating that postsynaptic action potentials can modulate synaptic plasticity by tuning VSCCs. Induction of depression requires [Ca2+] elevations and activation of L-type VSCCs, which activate Ca2+/calmodulin-dependent kinase II (CaMKII) and a cyclic adenosine monophosphate (cAMP)-dependent pathway. Given that L-type VSCCs do not contribute measurably to Ca2+ influx in spines, they must activate downstream effectors either directly through voltage-dependent conformational changes or via [Ca2+] microdomains.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Activity-dependent depression of action potential-evoked [Ca2+] transients in spines.
Figure 2: Types of calcium channels in spines and dendrites.
Figure 3: Depression is due to a change in the probability of opening in response to an action potential.
Figure 4: All-or-none depression of [Ca2+] transients (Δ[Ca2+]AP).
Figure 5: Depression of VSCCs interferes with induction of LTP.
Figure 6: Mechanism of activity-dependent depression of VSCCs.

Similar content being viewed by others

References

  1. Berridge, M.J. Neuronal calcium signaling. Neuron 21, 13–26 (1998).

    Article  CAS  Google Scholar 

  2. Zucker, R.S. Calcium- and activity-dependent synaptic plasticity. Curr. Opin. Neurobiol. 9, 305–313 (1999).

    Article  CAS  Google Scholar 

  3. Magee, J.C. & Johnston, D. A synaptically controlled, associative signal for Hebbian synaptic plasticity in hippocampal neurons. Science 275, 209–213 (1997).

    Article  CAS  Google Scholar 

  4. Sabatini, B.L., Maravall, M. & Svoboda, K. Ca2+ signaling in dendritic spines. Curr. Opin. Neurobiol. 11, 349–356 (2001).

    Article  CAS  Google Scholar 

  5. Nimchinsky, E.A., Sabatini, B.L. & Svoboda, K. Structure and function of dendritic spines. Annu. Rev. Physiol. 64, 313–353 (2002).

    Article  CAS  Google Scholar 

  6. Svoboda, K., Tank, D.W. & Denk, W. Direct measurement of coupling between dendritic spines and shafts. Science 272, 716–719 (1996).

    Article  CAS  Google Scholar 

  7. Kennedy, M.B. Signal-processing machines at the postsynaptic density. Science 290, 750–754 (2000).

    Article  CAS  Google Scholar 

  8. Davare, M.A. et al. A β2 adrenergic receptor signaling complex assembled with the Ca2+ channel Cav1.2 Science 293, 98–101 (2001).

    Article  CAS  Google Scholar 

  9. Yuste, R. & Denk, W. Dendritic spines as basic functional units of neuronal integration. Nature 375, 682–684 (1995).

    Article  CAS  Google Scholar 

  10. Muller, W. & Connor, J.A. Dendritic spines as individual neuronal compartments for synaptic Ca2+ responses. Nature 354, 73–76 (1991).

    Article  CAS  Google Scholar 

  11. Mainen, Z.F., Malinow, R. & Svoboda, K. Synaptic calcium transients in single spines indicate that NMDA receptors are not saturated. Nature 399, 151–155 (1999).

    Article  CAS  Google Scholar 

  12. Cummings, J.A., Mulkey, R.M., Nicoll, R.A. & Malenka, R.C. Ca2+ signaling requirements for long-term depression in the hippocampus. Neuron 16, 825–833 (1996).

    Article  CAS  Google Scholar 

  13. Jaffe, D.B. et al. The spread of Na+ spikes determines the pattern of dendritic Ca2+ entry into hippocampal neurons. Nature 357, 244–246 (1992).

    Article  CAS  Google Scholar 

  14. Sabatini, B.L. & Svoboda, K. Analysis of calcium channels in single spines using optical fluctuation analysis. Nature 408, 589–593 (2000).

    Article  CAS  Google Scholar 

  15. Sabatini, B.S., Oertner, T.G. & Svoboda, K. The life-cycle of Ca2+ ions in spines. Neuron 33, 439–452 (2002).

    Article  CAS  Google Scholar 

  16. Svoboda, K., Denk, W., Kleinfeld, D. & Tank, D.W. In vivo dendritic calcium dynamics in neocortical pyramidal neurons. Nature 385, 161–165 (1997).

    Article  CAS  Google Scholar 

  17. Catterall, W.A. Structure and regulation of voltage-gated Ca2+ channels. Annu. Rev. Cell Dev. Biol. 16, 521–555 (2000).

    Article  CAS  Google Scholar 

  18. Brehm, P. & Eckert, R. Calcium entry leads to inactivation of calcium channel in Paramecium. Science 202, 1203–1206 (1978).

    Article  CAS  Google Scholar 

  19. Budde, T., Meuth, S. & Pape, H.C. Calcium-dependent inactivation of neuronal calcium channels. Nat. Rev. Neurosci. 3, 873–883 (2002).

    Article  CAS  Google Scholar 

  20. Oertner, T.G., Sabatini, B.S., Nimchinsky, E.A. & Svoboda, K. Facilitation at single synapses probed with optical quantal analysis. Nat. Neurosci. 5, 657–664 (2002).

    Article  CAS  Google Scholar 

  21. Denk, W. & Svoboda, K. Photon upmanship: why multiphoton imaging is more than a gimmick. Neuron 18, 351–357 (1997).

    Article  CAS  Google Scholar 

  22. Denk, W., Strickler, J.H. & Webb, W.W. Two-photon laser scanning microscopy. Science 248, 73–76 (1990).

    Article  CAS  Google Scholar 

  23. Randall, A.D. & Tsien, R.W. Contrasting biophysical and pharmacological properties of T-type and R- type calcium channels. Neuropharmacology 36, 879–893 (1997).

    Article  CAS  Google Scholar 

  24. Magee, J.C. & Johnston, D. Characterization of single voltage-gated Na+ and Ca2+ channels in apical dendrites of rat CA1 pyramidal neurons. J. Physiol. 487, 67–90 (1995).

    Article  CAS  Google Scholar 

  25. Soong, T.W. et al. Structure and functional expression of a member of the low voltage-activated calcium channel family. Science 260, 1133–1136 (1993).

    Article  CAS  Google Scholar 

  26. Tokumitsu, H. et al. KN-62, 1-[N,O-bis(5-isoquinolinesulfonyl)-N-methyl-L-tyrosyl]-4-phenylpiperazine, a specific inhibitor of Ca2+/calmodulin-dependent protein kinase II. J. Biol. Chem. 265, 4315–4320 (1990).

    CAS  PubMed  Google Scholar 

  27. Kavalali, E.T., Zhuo, M., Bito, H. & Tsien, R.W. Dendritic Ca2+ channels characterized by recordings from isolated hippocampal dendritic segments. Neuron 18, 651–663 (1997).

    Article  CAS  Google Scholar 

  28. Mermelstein, P.G., Bito, H., Deisseroth, K. & Tsien, R.W. Critical dependence of cAMP response element-binding protein phosphorylation on L-type calcium channels supports a selective response to EPSPs in preference to action potentials. J. Neurosci. 20, 266–273 (2000).

    Article  CAS  Google Scholar 

  29. Bean, B.P. & Mintz, I.M. in Ion Channels (ed. Peracchia, C.) 199–210 (Academic, San Diego, 1994).

    Google Scholar 

  30. Czurko, A., Hirase, H., Csicsvari, J. & Buzsaki, G. Sustained activation of hippocampal pyramidal cells by 'space clamping' in a running wheel. Eur. J. Neurosci. 11, 344–352 (1999).

    Article  CAS  Google Scholar 

  31. Ito, K. et al. Voltage-gated Ca2+ channel blockers, omega-AgaIVA and Ni2+, suppress the induction of theta-burst induced long-term potentiation in guinea pig hippocampal CA1 neurons. Neurosci. Lett. 183, 112–115 (1995).

    Article  CAS  Google Scholar 

  32. Treiman, M., Caspersen, C. & Christensen, S.B. A tool coming of age: thapsigargin as an inhibitor of sarco-endoplasmic reticulum Ca2+-ATPases. Trends Pharmacol. Sci. 19, 131–135 (1998).

    Article  CAS  Google Scholar 

  33. Nakai, J. et al. Enhanced dihydropyridine receptor channel activity in the presence of ryanodine receptor. Nature 380, 72–75 (1996).

    Article  CAS  Google Scholar 

  34. Hille, B. Ionic Channels of Excitable Membranes (Sinauer, Sunderland, 2001).

    Google Scholar 

  35. Dolmetsch, R.E., Pajvani, U., Fife, K., Spotts, J.M. & Greenberg, M.E. Signaling to the nucleus by an L-type calcium channel-calmodulin complex through the MAP kinase pathway. Science 294, 333–339 (2001).

    Article  CAS  Google Scholar 

  36. Kennedy, M.B., Bennett, M.K. & Erondu, N.E. Biochemical and immunochemical evidence that the “major postsynaptic density protein” is a subunit of a calmodulin-dependent protein kinase. Proc. Natl. Acad. Sci. USA 80, 7357–7361 (1983).

    Article  CAS  Google Scholar 

  37. Ishida, A., Kameshita, I., Okuno, S., Kitani, T. & Fujisawa, H. A novel highly specific and potent inhibitor of calmodulin-dependent protein kinase II. Biochem. Biophys. Res. Commun. 212, 806–812 (1995).

    Article  CAS  Google Scholar 

  38. Lledo, P.M. et al. Calcium/calmodulin-dependent kinase II and long-term potentiation enhance synaptic transmission by the same mechanism. Proc. Natl. Acad. Sci. USA 92, 11175–11179 (1995).

    Article  CAS  Google Scholar 

  39. Shirke, A.M. & Malinow, R. Mechanisms of potentiation by calcium-calmodulin kinase II of postsynaptic sensitivity in rat hippocampal CA1 neurons. J. Neurophysiol. 78, 2682–2692 (1997).

    Article  CAS  Google Scholar 

  40. Gao, T. et al. cAMP-dependent regulation of cardiac L-type Ca2+ channels requires membrane targeting of PKA and phosphorylation of channel subunits. Neuron 19, 185–196 (1997).

    Article  CAS  Google Scholar 

  41. Westcott, K.R., La Porte, D.C. & Storm, D.R. Resolution of adenylate cyclase sensitive and insensitive to Ca2+ and calcium-dependent regulatory protein (CDR) by CDR-sepharose affinity chromatography. Proc. Natl. Acad. Sci. USA 76, 204–208 (1979).

    Article  CAS  Google Scholar 

  42. Imredy, J.P. & Yue, D.T. Mechanism of Ca2+-sensitive inactivation of L-type Ca2+ channels. Neuron 12, 1301–1318 (1994).

    Article  CAS  Google Scholar 

  43. Miller, S.G. & Kennedy, M.B. Regulation of brain type II Ca2+/calmodulin-dependent protein kinase by autophosphorylation: a Ca2+-triggered molecular switch. Cell 44, 861–870 (1986).

    Article  CAS  Google Scholar 

  44. Lisman, J.E. & Zhabotinsky, A.M. A model of synaptic memory: a CaMKII/PP1 switch that potentiates transmission by organizing an AMPA receptor anchoring assembly. Neuron 31, 191–201 (2001).

    Article  CAS  Google Scholar 

  45. Kullmann, D.M., Perkel, D.J., Manabe, T. & Nicoll, R.A. Ca2+ entry via postsynaptic voltage-sensitive Ca2+ channels can transiently potentiate excitatory synaptic transmission in the hippocampus. Neuron 9, 1175–1183 (1992).

    Article  CAS  Google Scholar 

  46. Simon, S.M. & Llinas, R.R. Compartmentalization of the submembrane calcium activity during calcium influx and its significance in transmitter release. Biophys. J. 48, 485–498 (1985).

    Article  CAS  Google Scholar 

  47. Bayer, K.U., De Koninck, P., Leonard, A.S., Hell, J.W. & Schulman, H. Interaction with the NMDA receptor locks CaMKII in an active conformation. Nature 411, 801–805 (2001).

    Article  CAS  Google Scholar 

  48. Garaschuk, O., Yaari, Y. & Konnerth, A. Release and sequestration of calcium by ryanodine-sensitive stores in rat hippocampal neurones. J. Physiol. 502, 13–30 (1997).

    Article  CAS  Google Scholar 

  49. Pologruto, T., Sabatini, B.L. & Svoboda, K. Flexible software for operating laser-scanning microscopes. BioMed. Eng. OnLine 2 (2003).

  50. Watanabe, S., Hoffman, D.A., Migliore, M. & Johnston, D. Dendritic K+ channels contribute to spike-timing dependent long-term potentiation in hippocampal pyramidal neurons. Proc. Natl. Acad. Sci. USA 99, 8366–8371 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank T. Soderling for CaMKII*, T. Oertner, P. O'Brien and B. Burbach for help with experiments, and G. Buzsaki, A. Ghosh, R. Iyengar, R. Malinow and members of our laboratory for a critical reading of the manuscript. This work was supported by the Japan Society for the Promotion of Science (to R.Y.), the Burroughs Wellcome Fund (to R.Y. and B.S.), the Mathers and Pew Foundations, and the US National Institutes of Health (NIH).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karel Svoboda.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1.

Relationship between calcium influx in response to a single action potential and spine volume. Spine volume was measured as in ref. 24. (PDF 191 kb)

Supplementary Fig. 2.

Schematic showing the signal transduction pathway causing DCC (see text for details). Red arrows, Ca2+ influx; black arrows, intracellular pathways. Dashed lines indicated putative interactions. (PDF 218 kb)

Supplementary Note (PDF 19 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yasuda, R., Sabatini, B. & Svoboda, K. Plasticity of calcium channels in dendritic spines. Nat Neurosci 6, 948–955 (2003). https://doi.org/10.1038/nn1112

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1112

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing