Abstract
The field of epigenetics provides neurobiologists with candidate mechanisms for experience-dependent changes in gene transcription. The ability to realize the potential of epigenetics in defining the causal pathways lying between environmental signals, transcriptional regulation and neural function will depend on moving beyond correlational studies focusing on individual epigenetic marks. Here we attempt to provide a conceptual framework for integrative research on nucleotide sequence, chromatin modifications, RNA signaling and their interactions in understanding experience-dependent phenotypic plasticity. Studies in genomic imprinting may serve as an existing model for such approaches.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Early-Life Adversity Induces Epigenetically Regulated Changes in Hippocampal Dopaminergic Molecular Pathways
Molecular Neurobiology Open Access 01 September 2018
-
Epigenetics and cerebral organoids: promising directions in autism spectrum disorders
Translational Psychiatry Open Access 10 January 2018
-
DNA methylome variation in a perinatal nurse-visitation program that reduces child maltreatment: a 27-year follow-up
Translational Psychiatry Open Access 10 January 2018
Access options
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout

References
Chen, W.G. et al. Science 302, 885–889 (2003).
Weaver, I.C. et al. J. Neurosci. 27, 1756–1768 (2007).
Borrelli, E., Nestler, E.J., Allis, C.D. & Sassone-Corsi, P. Neuron 60, 961–974 (2008).
He, F. et al. Nat. Neurosci. 8, 616–625 (2005).
Weaver, I.C. et al. Nat. Neurosci. 7, 847–854 (2004).
Murgatroyd, C. et al. Nat. Neurosci. 12, 1559–1566 (2009).
Renthal, W. & Nestler, E.J. Trends Mol. Med. 14, 341–350 (2008).
Jirtle, R.L. & Skinner, M.K. Nat. Rev. Genet. 8, 253–262 (2007).
Roth, T.L. & Sweatt, J.D. Curr. Opin. Neurobiol. 19, 336–342 (2009).
Amir, R.E. et al. Nat. Genet. 23, 185–188 (1999).
Akbarian, S. & Huang, H.S. Biol. Psychiatry 65, 198–203 (2009).
McGowan, P.O. et al. Nat. Neurosci. 12, 342–348 (2009).
Bird, A. Nature 447, 396–398 (2007).
Klose, R.J. & Bird, A.P. Trends Biochem. Sci. 31, 89–97 (2006).
Hendrich, B. & Tweedie, S. Trends Genet. 19, 269–277 (2003).
Weiss, A. & Cedar, H. Genes Cells 2, 481–486 (1997).
Hake, S.B. & Allis, C.D. Proc. Natl. Acad. Sci. USA 103, 6428–6435 (2006).
Bernstein, B.E. et al. Cell 125, 315–326 (2006).
Sanz, L.A. et al. EMBO J. 27, 2523–2532 (2008).
McEwen, K.R. & Ferguson-Smith, A.C. Epigenetics Chromatin 3, 2 (2010).
Berger, S.L. Nature 447, 407–412 (2007).
Ooi, S.K. et al. Nature 448, 714–717 (2007).
Ciccone, D.N. et al. Nature 461, 415–418 (2009).
Li, F. et al. Cell 135, 272–283 (2008).
Elgin, S.C. & Grewal, S.I. Curr. Biol. 13, R895–R898 (2003).
Vakoc, C.R., Mandat, S.A., Olenchock, B.A. & Blobel, G.A. Mol. Cell 19, 381–391 (2005).
Angrisano, T. et al. Nucleic Acids Res. 34, 364–372 (2006).
Fujita, H. et al. Mol. Cell. Biol. 23, 2645–2657 (2003).
Luo, S.-W. et al. EMBO J. 28, 2568–2582 (2009).
Chahrour, M. et al. Science 320, 1224–1229 (2008).
Skene, P.J. et al. Mol. Cell 37, 457–468 (2010).
Keogh, M.C. et al. Cell 123, 593–605 (2005).
Sims, R.J. III & Reinberg, D. Nat. Rev. Mol. Cell Biol. 9, 815–820 (2008).
Doi, M., Hirayama, J. & Sassone-Corsi, P. Cell 125, 497–508 (2006).
Zhang, Y. & Reinberg, D. Genes Dev. 15, 2343–2360 (2001).
Kim, M.-S. et al. Nature 461, 1007–1012 (2009).
Métivier, R. et al. Nature 452, 45–50 (2008).
Zhang, T.-Y., Hellstrom, I., Diorio, J. & Meaney, M.J. J. Neurosci. 30, 13130–13137 (2010).
Hall, S.E., Beverly, M., Russ, C., Nusbaum, C. & Sengupta, P. Curr. Biol. 20, 149–155 (2010).
Segal, E. & Widom, J. Trends Genet. 25, 335–343 (2009).
Weber, M. et al. Nat. Genet. 39, 457–466 (2007).
Klose, R.J. et al. Mol. Cell 19, 667–678 (2005).
Thomson, J.P. et al. Nature 464, 1082–1086 (2010).
Zhang, D. et al. Am. J. Hum. Genet. 86, 411–419 (2010).
Kong, A. et al. Nature 462, 868–874 (2009).
Edwards, C.A. et al. PLoS Biol. 6, e135 (2008).
Davies, W., Isles, A.R., Humby, T. & Wilkinson, L.S. Adv. Exp. Med. Biol. 626, 62–70 (2008).
Horsthemke, B. & Wagstaff J. Am. J. Med. Genet. 146A, 2041–2052 (2008).
Yamazawa, K., Ogata, T. & Ferguson-Smith, A.C. Am. J. Med. Genet. 154C, 329–334 (2010).
Chen, M. et al. Cell Metab. 9, 548–555 (2009).
Plagge, A. & Kelsey, G. Cytogenet. Genome Res. 113, 178–187 (2006).
Gregg, C. et al. Science 329, 643–648 (2010).
Wang, X. et al. PLoS ONE 3, e3839 (2008).
Babak, T. et al. Curr. Biol. 18, 1735–1741 (2008).
Taverna, S.D., Haitao, L., Ruthenberg, A.J., Allis, C.D. & Patel, D.J. Nat. Struct. Mol. Biol. 14, 1025–1040 (2007).
Nagano, T. et al. Science 322, 1717–1720 (2008).
Koerner, M.V., Pauler, F.M., Huang, R. & Barlow, D.P. Development 136, 1771–1783 (2009).
Schratt, G.M. et al. Nature 439, 283–289 (2006).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Rights and permissions
About this article
Cite this article
Meaney, M., Ferguson-Smith, A. Epigenetic regulation of the neural transcriptome: the meaning of the marks. Nat Neurosci 13, 1313–1318 (2010). https://doi.org/10.1038/nn1110-1313
Published:
Issue Date:
DOI: https://doi.org/10.1038/nn1110-1313
This article is cited by
-
Early-Life Adversity Induces Epigenetically Regulated Changes in Hippocampal Dopaminergic Molecular Pathways
Molecular Neurobiology (2019)
-
Epigenetics and cerebral organoids: promising directions in autism spectrum disorders
Translational Psychiatry (2018)
-
DNA methylome variation in a perinatal nurse-visitation program that reduces child maltreatment: a 27-year follow-up
Translational Psychiatry (2018)
-
CDYL suppresses epileptogenesis in mice through repression of axonal Nav1.6 sodium channel expression
Nature Communications (2017)
-
Impact of diet-derived signaling molecules on human cognition: exploring the food–brain axis
npj Science of Food (2017)