Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The neurotrophin receptor p75NTR: novel functions and implications for diseases of the nervous system

Abstract

Neurotrophins have long been known to promote the survival and differentiation of vertebrate neurons. However, these growth factors can also induce cell death through the p75 neurotrophin receptor (p75NTR), a member of the tumor necrosis factor receptor superfamily. Consistent with a function in controlling the survival and process formation of neurons, p75NTR is mainly expressed during early neuronal development. In the adult, p75NTR is re-expressed in various pathological conditions, including epilepsy, axotomy and neurodegeneration. Potentially toxic peptides, including the amyloid β- (Aβ-) peptide that accumulates in Alzheimer's disease, are ligands for p75NTR. Recent work also implicates p75NTR in the regulation of both synaptic transmission and axonal elongation. It associates with the Nogo receptor, a binding protein for axonal growth inhibitors, and appears to be the transducing subunit of this receptor complex.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structures of p75NTR and Trk receptors.
Figure 2: P75NTR ligands and transmembrane interactors.
Figure 3: P75NTR in the vascular system.
Figure 4: P75NTR is involved in several different biological activities, requiring multiple adaptor proteins.

Similar content being viewed by others

References

  1. Bibel, M. & Barde, Y.-A. Neurotrophins: key regulators of cell fate and cell shape in the vertebrate nervous system. Genes Dev. 14, 2919–2937 (2000).

    CAS  PubMed  Google Scholar 

  2. Huang, E.J. & Reichardt, L.F. Neurotrophins: roles in neuronal development and function. Annu. Rev. Neurosci. 24, 677–736 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Thoenen, H. Neurotrophins and activity-dependent plasticity. Prog. Brain Res. 128, 183–191 (2000).

    CAS  PubMed  Google Scholar 

  4. Poo, M.M. Neurotrophins as synaptic modulators. Nat. Rev. Neurosci. 2, 24–32 (2001).

    CAS  PubMed  Google Scholar 

  5. Kafitz, K.W., Rose, C.R., Thoenen, H. & Konnerth, A. Neurotrophin-evoked rapid excitation through TrkB receptors. Nature 401, 918–921 (1999).

    CAS  PubMed  Google Scholar 

  6. Kaplan, D.R. & Miller, F.D. Signal transduction by the neurotrophin receptors. Curr. Opin. Cell Biol. 9, 213–221 (1997).

    CAS  PubMed  Google Scholar 

  7. Friedman, W.J. & Greene, L.A. Neurotrophin signaling via Trks and p75. Exp. Cell Res. 253, 131–142 (1999).

    CAS  PubMed  Google Scholar 

  8. Patapoutian, A. & Reichardt, L.F. Trk receptors: mediators of neurotrophin action. Curr. Opin. Neurobiol. 11, 272–280 (2001).

    CAS  PubMed  Google Scholar 

  9. Locksley, R.M., Killeen, N. & Lenardo, M.J. The TNF and TNF receptor superfamilies: integrating mammalian biology. Cell 104, 487–501 (2001).

    CAS  PubMed  Google Scholar 

  10. Bothwell, M. Functional interactions of neurotrophins and neurotrophin receptors. Annu. Rev. Neurosci. 18, 223–253 (1995).

    CAS  PubMed  Google Scholar 

  11. Lee, R., Kermani, P., Teng, K.K. & Hempstead, B.L. Regulation of cell survival by secreted proneurotrophins. Science 294, 1945–1948 (2001).

    CAS  PubMed  Google Scholar 

  12. Hempstead, B.L. The many faces of p75NTR. Curr. Opin. Neurobiol. 12, 260–267 (2002).

    CAS  PubMed  Google Scholar 

  13. Fahnestock, M., Michalski, B., Xu, B. & Coughlin, M.D. The precursor pro-nerve growth factor is the predominant form of nerve growth factor in brain and is increased in Alzheimer's disease. Mol. Cell. Neurosci. 18, 210–220 (2001).

    CAS  PubMed  Google Scholar 

  14. Della-Bianca, V. et al. Neurotrophin p75 receptor is involved in neuronal damage by prion peptide-(106–126). J. Biol. Chem. 276, 38929–38933 (2001).

    CAS  PubMed  Google Scholar 

  15. Yaar, M. et al. Binding of beta-amyloid to the p75 neurotrophin receptor induces apoptosis. A possible mechanism for Alzheimer's disease. J. Clin. Invest. 100, 2333–2340 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Kuner, P., Schubenel, R. & Hertel, C. Beta-amyloid binds to p57NTR and activates NFκB in human neuroblastoma cells. J. Neurosci. Res. 54, 798–804 (1998).

    CAS  PubMed  Google Scholar 

  17. Perini, G. et al. Role of p75 neurotrophin receptor in the neurotoxicity by beta-amyloid peptides and synergistic effect of inflammatory cytokines. J. Exp. Med. 195, 907–918 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Tuffereau, C., Bénéjean, J., Blondel, D., Kieffer, B. & Flamand, A. Low-affinity nerve-growth factor receptor (P75NTR) can serve as a receptor for rabies virus. EMBO J. 17, 7250–7259 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Von Schack, D. et al. Complete ablation of the neurotrophin receptor p75NTR causes defects both in the nervous and the vascular system. Nat. Neurosci. 4, 977–978 (2001).

    CAS  PubMed  Google Scholar 

  20. Langevin, C., Jaaro, H., Bressanelli, S., Fainzilber, M. & Tuffereau, C. Rabies virus glycoprotein (RVG) is a trimeric ligand for the N-terminal cysteine-rich domain of the mammalian p75 neurotrophin receptor. J. Biol. Chem. [e-pub] (2002).

  21. Lee, K.-F. et al. Targeted mutation of the gene encoding the low affinity NGF receptor p75 leads to deficits in the peripheral sensory nervous system. Cell 69, 737–749 (1992).

    CAS  PubMed  Google Scholar 

  22. Casaccia-Bonnefil, P., Kong, H. & Chao, M.V. Neurotrophins: the biological paradox of survival factors eliciting apoptosis. Cell Death Differ. 5, 357–364 (1998).

    CAS  PubMed  Google Scholar 

  23. Frade, J.M. & Barde, Y.A. Nerve growth factor: two receptors, multiple functions. BioEssays 20, 137–145 (1998).

    CAS  PubMed  Google Scholar 

  24. Barker, P.A. p75NTR: a study in contrasts. Cell Death Differ. 5, 346–356 (1998).

    CAS  PubMed  Google Scholar 

  25. Bamji, S.X. et al. The p75 neurotrophin receptor mediates neuronal apoptosis and is essential for naturally occurring sympathetic neuron death. J. Cell Biol. 140, 911–923 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Rabizadeh, S. et al. Induction of apoptosis by the low-affinity NGF receptor. Science 261, 345–348 (1993).

    CAS  PubMed  Google Scholar 

  27. Majdan, M. et al. Transgenic mice expressing the intracellular domain of the p75 neurotrophin receptor undergo neuronal apoptosis. J. Neurosci. 17, 6988–6998 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Sofroniew, M.V., Howe, C.L. & Mobley, W.C. Nerve growth factor signaling, neuroprotection and neural repair. Annu. Rev. Neurosci. 24, 1217–1281 (2001).

    CAS  PubMed  Google Scholar 

  29. Naumann, T. et al. Complete deletion of the neurotrophin receptor p75NTR leads to long-lasting increases in the number of basal forebrain cholinergic neurons. J. Neurosci. 22, 2409–2418 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Greferath, U. et al. Enlarged cholinergic forebrain neurons and improved spatial learning in p75 knockout mice. Eur. J. Neurosci. 12, 885–893 (2000).

    CAS  PubMed  Google Scholar 

  31. Frade, J.M. NRAGE and the cycling side of the neurotrophin receptor p75. Trends Neurosci. 23, 591–592 (2000).

    CAS  PubMed  Google Scholar 

  32. Dobrowsky, R.T. & Carter, B.D. p75 neurotrophin receptor signaling: mechanisms for neurotrophic modulation of cell stress? J. Neurosci. Res. 61, 237–243 (2000).

    CAS  PubMed  Google Scholar 

  33. Barker, P.A. & Salehi, A. The MAGE proteins: emerging roles in cell cycle progression, apoptosis and neurogenetic disease. J. Neurosci. Res. 67, 705–712 (2002).

    CAS  PubMed  Google Scholar 

  34. Agerman, K., Baudet, C., Fundin, B., Willson, C. & Ernfors, P. Attenuation of a caspase-3 dependent cell death in NT4- and p75-deficient embryonic sensory neurons. Mol. Cell. Neurosci. 16, 258–268 (2000).

    CAS  PubMed  Google Scholar 

  35. Troy, C.M., Friedman, J.E. & Friedman, W.J. Mechanisms of p75-mediated death of hippocampal neurons: role of caspases. J. Biol. Chem. [e-pub] (2002).

  36. Yoon, S.O., Casaccia-Bonnefil, P., Carter, B. & Chao, M.V. Competitive signaling between TrkA and p75 nerve growth factor receptors determines cell survival. J. Neurosci. 18, 3273–3281 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Aloyz, R.S. et al. p53 is essential for developmental neuron death as regulated by the TrkA and p75 neurotrophin receptors. J. Cell Biol. 143, 1691–1703 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Ye, X. et al. TRAF family proteins interact with the common neurotrophin receptor and modulate apoptosis induction. J. Biol. Chem. 274, 30202–30208 (1999).

    CAS  PubMed  Google Scholar 

  39. Khursigara, G., Orlinick, J.R. & Chao, M.V. Association of the p75 neurotrophin receptor with TRAF6. J. Biol. Chem. 274, 2597–2600 (1999).

    CAS  PubMed  Google Scholar 

  40. Chung, J.Y., Park, Y.C., Ye, H. & Wu, H. All TRAFs are not equal: common and distinct molecular mechanisms of TRAF-mediated signal transduction. J. Cell Sci. 115, 679–688 (2002).

    CAS  PubMed  Google Scholar 

  41. Lee, K.-F., Davies, A.M. & Jaenisch, R. p75-deficient embryonic dorsal root sensory and neonatal sympathetic neurons display a decreased sensitivity to NGF. Development 120, 1027–1033 (1994).

    CAS  PubMed  Google Scholar 

  42. Bibel, M., Hoppe, E. & Barde, Y.A. Biochemical and functional interactions between the neurotrophin receptors trk and p75NTR. EMBO J. 18, 616–622 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Hempstead, B.L., Martin-Zanca, D., Kaplan, D.R., Parada, L.F. & Chao, M.V. High-affinity NGF binding requires coexpression of the trk proto-oncogene and the low-affinity NGF receptor. Nature 350, 678–683 (1991).

    CAS  PubMed  Google Scholar 

  44. Woldeyesus, M.T. et al. Peripheral nervous system defects in erbB2 mutants following genetic rescue of heart development. Genes Dev. 13, 2538–2548 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Johnson, E.M. Jr., Taniuchi, M. & Distefano, P.S. Expression and possible function of nerve growth factor receptors on Schwann cells. Trends Neurosci. 11, 299–304 (1988).

    CAS  PubMed  Google Scholar 

  46. Anton, E.S., Weskamp, G., Reichardt, L.F. & Matthew, W.D. Nerve growth factor and its low-affinity receptor promote Schwann cell migration. Proc. Natl. Acad. Sci. USA 91, 2795–2799 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Bentley, C.A. & Lee, K.F. p75 is important for axon growth and Schwann cell migration during development. J. Neurosci. 20, 7706–7715 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Carter, B.D. et al. Selective activation of NF-κB by nerve growth factor through the neurotrophin receptor p75. Science 272, 542–545 (1996).

    CAS  PubMed  Google Scholar 

  49. Descamps, S. et al. Nerve growth factor stimulates proliferation and survival of human breast cancer cells through two distinct signaling pathways. J. Biol. Chem. 276, 17864–17870 (2001).

    CAS  PubMed  Google Scholar 

  50. Cosgaya, J.M. & Shooter, E.M. Binding of nerve growth factor to its p75 receptor in stressed cells induces selective IκB-beta degradation and NF-κB nuclear translocation. J. Neurochem. 79, 391–399 (2001).

    CAS  PubMed  Google Scholar 

  51. Wooten, M.W. et al. The atypical protein kinase C-interacting protein p62 is a scaffold for NF-κB activation by nerve growth factor. J. Biol. Chem. 276, 7709–7712 (2001).

    CAS  PubMed  Google Scholar 

  52. Hamanoue, M. et al. p75-mediated NF-κB activation enhances the survival response of developing sensory neurons to nerve growth factor. Mol. Cell. Neurosci. 14, 28–40 (1999).

    CAS  PubMed  Google Scholar 

  53. DeFreitas, M.F., McQuillen, P.S. & Shatz, C.J. A novel p75NTR signaling pathway promotes survival, not death, of immunopurified neocortical subplate neurons. J. Neurosci. 21, 5121–5129 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Roux, P.P., Bhakar, A.L., Kennedy, T.E. & Barker, P.A. The p75 neurotrophin receptor activates Akt (protein kinase B) through a phosphatidylinositol 3-kinase-dependent pathway. J. Biol. Chem. 276, 23097–23104 (2001).

    CAS  PubMed  Google Scholar 

  55. Chen, G. & Goeddel, D.V. TNF-R1 signaling: a beautiful pathway. Science 296, 1634–1635 (2002).

    CAS  PubMed  Google Scholar 

  56. Taglialatela, G., Robinson, R. & Perez-Polo, J.R. Inhibition of nuclear factor κB (NF κB) activity induces nerve growth factor-resistant apoptosis in PC12 cells. J. Neurosci. Res. 94, 155–162 (1997).

    Google Scholar 

  57. Gentry, J.J., Casaccia-Bonnefil, P. & Carter, B.D. Nerve growth factor activation of nuclear factor κB through its p75 receptor is an anti-apoptotic signal in RN22 schwannoma cells. J. Biol. Chem. 275, 7558–7565 (2000).

    CAS  PubMed  Google Scholar 

  58. Brann, A.B. et al. Ceramide signaling downstream of the p75 neurotrophin receptor mediates the effects of nerve growth factor on outgrowth of cultured hippocampal neurons. J. Neurosci. 19, 8199–8206 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Yamashita, T., Tucker, K.L. & Barde, Y.A. Neurotrophin binding to the p75 receptor modulates Rho activity and axonal outgrowth. Neuron 24, 585–593 (1999).

    CAS  PubMed  Google Scholar 

  60. Collins, F. & Dawson, A. An effect of nerve growth factor on the parasympathetic ciliary ganglion. J. Neurosci. 4, 1281–1288 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Schmidt, A. & Hall, A. Guanine nucleotide exchange factors for Rho GTPases: turning on the switch. Genes Dev. 16, 1587–1609 (2002).

    CAS  PubMed  Google Scholar 

  62. Walsh, G.S., Krol, K.M., Crutcher, K.A. & Kawaja, M.D. Enhanced neurotrophin-induced axon growth in myelinated portions of the CNS in mice lacking the p75 neurotrophin receptor. J. Neurosci. 19, 4155–4168 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Yamashita, T., Higuchi, H. & Tohyama, M. The p75 receptor transduces the signal from myelin-associated glycoprotein to Rho. J. Cell Biol. 157, 565–570 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Yang, L.J. et al. Gangliosides are neuronal ligands for myelin-associated glycoprotein. Proc. Natl. Acad. Sci. USA 93, 814–818 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Wang, K.C., Kim, J.A., Sivasankaran, R., Segal, R. & He, Z p75 interacts with the Nogo receptor as a co-receptor for Nogo, MAG and OMgp. Nature advance online publication (doi:10.1038/nature01176).

  66. Fournier, A.E., GrandPre, T. & Strittmatter, S.M. Identification of a receptor mediating Nogo-66 inhibition of axonal regeneration. Nature 409, 341–346 (2001).

    CAS  PubMed  Google Scholar 

  67. Wang, K.C. et al. Oligodendrocyte-myelin glycoprotein is a Nogo receptor ligand that inhibits neurite outgrowth. Nature 417, 941–944 (2002).

    CAS  PubMed  Google Scholar 

  68. McQuillen, P.S., DeFreitas, M.F., Zada, G. & Shatz, C.J. A novel role for p75NTR in subplate growth cone complexity and visual thalamocortical innervation. J. Neurosci. 22, 3580–3593 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Yang, B., Slonimsky, J.D. & Birren, S.J. A rapid switch in sympathetic neurotransmitter release properties mediated by the p75 receptor. Nat. Neurosci. 5, 539–545 (2002).

    CAS  PubMed  Google Scholar 

  70. Furshpan, E.J., MacLeish, P.R., O'Lague, P.H. & Potter, D.D. Chemical transmission between rat sympathetic neurons and cardiac myocytes developing in microcultures: evidence for cholinergic, adrenergic and dual-function neurons. Proc. Natl. Acad. Sci. USA 73, 4225–4229 (1976).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Lockhart, S.T., Turrigiano, G.G. & Birren, S.J. Nerve growth factor modulates synaptic transmission between sympathetic neurons and cardiac myocytes. J. Neurosci. 17, 9573–9582 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Dobrowsky, R.T. & Carter, B.D. Coupling of the p75 neurotrophin receptor to sphingolipid signaling. Ann. NY Acad. Sci. 845, 32–45 (1998).

    CAS  PubMed  Google Scholar 

  73. Numakawa, T., Takei, N., Yamagishi, S., Sakai, N. & Hatanaka, H. Neurotrophin-elicited short-term glutamate release from cultured cerebellar granule neurons. Brain Res. 842, 431–438 (1999).

    CAS  PubMed  Google Scholar 

  74. Sudhof, T.C. α-Latrotoxin and its receptors: neurexins and CIRL/latrophilins. Annu. Rev. Neurosci. 24, 933–962 (2001).

    CAS  PubMed  Google Scholar 

  75. Gage, F.H. et al. NGF receptor reexpression and NGF-mediated cholinergic neuronal hypertrophy in the damaged adult neostriatum. Neuron 2, 1177–1184 (1989).

    CAS  PubMed  Google Scholar 

  76. Rende, M., Provenzano, C. & Tonali, P. Modulation of low-affinity nerve growth factor receptor in injured adult rat spinal cord motoneurons. J. Comp. Neurol. 338, 560–574 (1993).

    CAS  PubMed  Google Scholar 

  77. Kokaia, Z., Andsberg, G., Martinez-Serrano, A. & Lindvall, O. Focal cerebral ischemia in rats induces expression of P75 neurotrophin receptor in resistant striatal cholinergic neurons. Neuroscience 84, 1113–1125 (1998).

    CAS  PubMed  Google Scholar 

  78. Roux, P.P., Colicos, M.A., Barker, P.A. & Kennedy, T.E. p75 neurotrophin receptor expression is induced in apoptotic neurons after seizure. J. Neurosci. 19, 6887–6896 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Mufson, E.J. & Kordower, J.H. Cortical neurons express nerve growth factor receptors in advanced age and Alzheimer disease. Proc. Natl. Acad. Sci. USA 89, 569–573 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Lowry, K.S. et al. A potential role for the p75 low-affinity neurotrophin receptor in spinal motor neuron degeneration in murine and human amyotrophic lateral sclerosis. Amyotroph. Lateral. Scler. Other Motor Neuron Disord. 2, 127–134 (2001).

    CAS  PubMed  Google Scholar 

  81. Giehl, K.M. et al. Endogenous brain-derived neurotrophic factor and neurotrophin-3 antagonistically regulate survival of axotomized corticospinal neurons in vivo. J. Neurosci. 21, 3492–3502 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Oh, J.D., Chartisathian, K., Chase, T.N. & Butcher, L.L. Overexpression of neurotrophin receptor p75 contributes to the excitotoxin-induced cholinergic neuronal death in rat basal forebrain. Brain Res. 853, 174–185 (2000).

    CAS  PubMed  Google Scholar 

  83. Barker, V., Middleton, G., Davey, F. & Davies, A.M. TNFα contributes to the death of NGF-dependent neurons during development. Nat. Neurosci. 4, 1194–1198 (2001).

    CAS  PubMed  Google Scholar 

  84. Raoul, C., Henderson, C.E. & Pettmann, B. Programmed cell death of embryonic motoneurons triggered through the Fas death receptor. J. Cell Biol. 147, 1049–1062 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Neumann, H. et al. Tumor necrosis factor inhibits neurite outgrowth and branching of hippocampal neurons by a rho-dependent mechanism. J. Neurosci. 22, 854–862 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Beattie, E.C. et al. Control of synaptic strength by glial TNFα. Science 295, 2282–2285 (2002).

    CAS  PubMed  Google Scholar 

  87. Liepinsh, E., Ilag, L.L., Otting, G. & Ibáñez, C.F. NMR structure of the death domain of the p75 neurotrophin receptor. EMBO J. 16, 4999–5005 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Coulson, E.J. et al. Chopper, a new death domain of the p75 neurotrophin receptor that mediates rapid neuronal cell death. J. Biol. Chem. 275, 30537–30545 (2000).

    CAS  PubMed  Google Scholar 

  89. Fainzilber, M. et al. CRNF, a molluscan neurotrophic factor that interacts with the p75 neurotrophin receptor. Science 274, 1540–1543 (1996).

    CAS  PubMed  Google Scholar 

  90. Kong, H., Boulter, J., Weber, J.L., Lai, C. & Chao, M.V. An evolutionarily conserved transmembrane protein that is a novel downstream target of neurotrophin and ephrin receptors. J. Neurosci. 21, 176–185 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Chittka, A. & Chao, M.V. Identification of a zinc finger protein whose subcellular distribution is regulated by serum and nerve growth factor. Proc. Natl. Acad. Sci. USA 96, 10705–10710 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Casademunt, E. et al. The zinc finger protein NRIF interacts with the neurotrophin receptor p75NTR and participates in programmed cell death. EMBO J. 18, (1999).

  93. Benzel, I., Barde, Y.A. & Casademunt, E. Strain-specific complementation between NRIF1 and NRIF2, two zinc finger proteins sharing structural and biochemical properties. Gene 281, 19–30 (2001).

    CAS  PubMed  Google Scholar 

  94. Salehi, A.H. et al. NRAGE, a novel MAGE protein, interacts with the p75 neurotrophin receptor and facilitates nerve growth factor-dependent apoptosis. Neuron 27, 279–288 (2000).

    CAS  PubMed  Google Scholar 

  95. Jordan, B.W. et al. Neurotrophin receptor-interacting mage homologue is an inducible inhibitor of apoptosis protein-interacting protein that augments cell death. J. Biol. Chem. 276, 39985–39989 (2001).

    CAS  PubMed  Google Scholar 

  96. Mukai, J. et al. NADE, a p75NTR-associated cell death executor, is involved in signal transduction mediated by the common neurotrophin receptor p75NTR. J. Biol. Chem. 275, 17566–17570 (2000).

    CAS  PubMed  Google Scholar 

  97. Irie, S. et al. Functional interaction of Fas-associated phosphatase-1 (FAP-1) with p75(NTR) and their effect on NF-κB activation. FEBS Lett. 460, 191–198 (1999).

    CAS  PubMed  Google Scholar 

  98. Khursigara, G. et al. A prosurvival function for the p75 receptor death domain mediated via the caspase recruitment domain receptor-interacting protein 2. J. Neurosci. 21, 5854–5863 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Bilderback, T.R., Grigsby, R.J. & Dobrowsky, R.T. Association of p75NTR with caveolin and localization of neurotrophin-induced sphingomyelin hydrolysis to caveolae. J. Biol. Chem. 272, 10922–10927 (1997)

    CAS  PubMed  Google Scholar 

  100. Mamidipudi, V., Li, X. & Wooten, M.W. Identification of IRAK as a conserved component in the p75-neurotrophin receptor activation of NF-κ B. J. Biol. Chem. 277, 28010–28018 (2002).

    CAS  PubMed  Google Scholar 

  101. Volonte, C., Angelastro, J.M. & Greene, L.A. Association of protein kinases ERK1 and ERK2 with p75 nerve growth factor receptors. J. Biol. Chem. 268, 21410–21415 (1993).

    CAS  PubMed  Google Scholar 

  102. Susen, K., Heumann, R. & Blochl, A. Nerve growth factor stimulates MAPK via the low affinity receptor p75(LNTR). FEBS Lett. 463, 231–234 (1999).

    CAS  PubMed  Google Scholar 

  103. Wang, J.J., Tasinato, A., Ethell, D.W., Testa, M.P. & Bredesen, D.E. Phosphorylation of the common neurotrophin receptor p75 by p38beta2 kinase affects NF-κB and AP-1 activities. J. Mol. Neurosci. 15, 19–29 (2000).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We wish to thank our colleagues M. Bibel, C. Brodski and R. Schweigreiter for insightful comments on our review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yves-Alain Barde.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dechant, G., Barde, YA. The neurotrophin receptor p75NTR: novel functions and implications for diseases of the nervous system. Nat Neurosci 5, 1131–1136 (2002). https://doi.org/10.1038/nn1102-1131

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1102-1131

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing