Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The role of single neurons in information processing

Abstract

Neurons carry out the many operations that extract meaningful information from sensory receptor arrays at the organism's periphery and translate these into action, imagery and memory. Within today's dominant computational paradigm, these operations, involving synapses, membrane ionic channels and changes in membrane potential, are thought of as steps in an algorithm or as computations. The role of neurons in these computations has evolved conceptually from that of a simple integrator of synaptic inputs until a threshold is reached and an output pulse is initiated, to a much more sophisticated processor with mixed analog-digital logic and highly adaptive synaptic elements.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Simple neuronal models.
Figure 2: Dendritic trees exist in many shapes and sizes.
Figure 3: Dendritic and axonal action potentials in a cortical pyramidal cell.

References

  1. McCulloch, W. S. & Pitts, W. A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biophys. 5, 115–133 ( 1943).

    Article  Google Scholar 

  2. Hertz, J., Krogh, A. & Palmer, R.G. Introduction to the Theory of Neural Computation (Addison-Wesley, Redwood City, California, 1991).

    Google Scholar 

  3. Chklovskii, D. B. Optimal sizes of dendritic and axonal arbors in a topographic projection. J. Neurophysiol. 83, 2113–2119 (2000).

    CAS  Article  Google Scholar 

  4. Spencer, W. A. & Kandel, E. R. Electrophysiology of hippocampal neurons: IV. Fast prepotentials. J. Neurophysiol. 24 , 272–285 (1961).

    CAS  Article  Google Scholar 

  5. Yuste, R. & Tank, D. W. Dendritic integration in mammalian neurons, a century after Cajal. Neuron 16, 701–716 (1996).

    CAS  Article  Google Scholar 

  6. Rall, W. Branching dendritic trees and motoneuron membrane resistivity. Exp. Neurol. 1, 491–527 ( 1959).

    CAS  Article  Google Scholar 

  7. Rall, W. in Neural Theory and Modeling (ed. Reiss, R.) 73– 97 (Stanford Univ. Press, Stanford, California, 1964 ).

    Google Scholar 

  8. Koch, C., Poggio, T. & Torre, V. Retinal ganglion cells: a functional interpretation of dendritic morphology. Phil. Trans. R. Soc. Lond. B Biol. Sci. 298, 227–263 (1982).

    CAS  Article  Google Scholar 

  9. Koch, C. & Poggio, T. in Single Neuron Computation (eds. McKenna, T., Davis, J. & Zornetzer, S. F.) 315– 345 (Academic, Boston, Massachusetts, 1992).

    Book  Google Scholar 

  10. Borg-Graham, L., Monier, C. & Fregnac, Y. Visual input evokes transient and strong shunting inhibition in visual cortical neurons. Nature 393, 369–373 (1998).

    CAS  Article  Google Scholar 

  11. Taylor, W. R., He, S., Levick, W. R. & Vaney, D. I. Dendritic computation of direction selectivity by retinal ganglion cells. Science 289, 2347–2350 (2000).

    CAS  Article  Google Scholar 

  12. Konishi, M. The neural algorithm for sound localization in the owl. Harvey Lectures 86, 47–64 ( 1992).

    Google Scholar 

  13. Young, S. R. & Rubel, E. W. Embryogenesis of arborization pattern and topography of individual axons in n. laminaris of the chicken brain-stem . J. Comp. Neurol. 254, 425– 459 (1986).

    CAS  Article  Google Scholar 

  14. Agmon-Snir, H., Carr, C. E. & Rinzel, J. The role of dendrites in auditory coincidence detection . Nature 393, 268–272 (1998).

    CAS  Article  Google Scholar 

  15. Mainen, Z. F. & Sejnowski, T. J. in Methods in Neuronal Modeling 2nd edn. (eds. Koch, C. & Segev, I.) 171– 210 (MIT Press, Cambridge, Massachusetts, 1998).

    Google Scholar 

  16. Magee, J. C. in Dendrites (eds. Stuart, G., Spruston, N. & Häusser, M.) 139–160 (Oxford Univ. Press, New York, 1999).

    Google Scholar 

  17. Stuart, G. J. & Sakmann, B. Active propagation of somatic action potentials into neocortical pyramidal cell dendrites. Nature 367, 69–72 (1994).

    CAS  Article  Google Scholar 

  18. Stuart, G., Spruston, N., Sakmann, B. & Häusser, M. Action potential initiation and backpropagation in neurons of the mammalian CNS. Trends Neurosci. 20, 125– 131 (1997).

    CAS  Article  Google Scholar 

  19. Häusser, M., Spruston, N. & Stuart, G. Electrical and chemical signaling in neuronal dendrites . Science (in press).

  20. Segev, I. & Rall, W. Excitable dendrites and spines: earlier theoretical insights elucidate recent direct observations. Trends Neurosci. 21, 453–460 ( 1998).

    CAS  Article  Google Scholar 

  21. Rall W. in Cellular Mechanisms Subserving Changes in Neuronal Activity (eds. Woody, C. D., Brown, K. A., Crow, T. J. & Knispel, J. D.) 13–21 (Brain Information Service Research Report No. 3, Univ. of California, Los Angeles, 1974).

    Google Scholar 

  22. Shepherd, G. M. The dendritic spine: A multifunctional unit. J. Neurophysiol. 75, 2197–2210 (1996).

    CAS  Article  Google Scholar 

  23. Koch, C. Biophysics of Computation (Oxford Univ. Press, New York, 1999).

    Google Scholar 

  24. Svoboda, K., Tank, D. W. & Denk, W. Direct measurement of coupling between dendritic spines and shafts. Science 272, 716– 719 (1996).

    CAS  Article  Google Scholar 

  25. Koch, C. & Zador, A. The function of dendritic spines: Devices subserving biochemical rather than electrical compartmentalization . J. Neurosci. 13, 413– 422 (1993).

    CAS  Article  Google Scholar 

  26. Yuste, R., Majewska, A. & Holthoff, K. From form to function: Calcium compartmentalization in dendritic spines. Nat. Neurosci. 3, 653 –659 (2000).

    CAS  Article  Google Scholar 

  27. Magee, J. C. & Cook, E. P. Somatic EPSP amplitude is independent of synapse location in hippocampal pyramidal neurons. Nat. Neurosci. 3, 895–903 ( 2000).

    CAS  Article  Google Scholar 

  28. Shepherd, G. M., Brayton, R. K., Miller, J. P., Segev, I., Rinzel, J. & Rall, W. Signal enhancement in distal cortical dendrites by means of interactions between active dendritic spines. Proc. Natl. Acad. Sci. USA 82, 2192–2195 ( 1985).

    CAS  Article  Google Scholar 

  29. Rall, W. & Segev, I. in Synaptic Function (eds. Edelman, G. M., Gall, W. E. & Cowan, W. M.) 605–636 (Wiley, New York, 1987).

    Google Scholar 

  30. Schiller, J., Schiller, Y., Stuart, G. & Sakmann, B. Calcium action potentials restricted to distal apical dendrites of rat neocortical pyramidal neurons. J. Physiol. (Lond.) 505, 605– 616 (1997).

    CAS  Article  Google Scholar 

  31. Larkum, M. E., Zhu, J. J. & Sakmann, B. A new cellular mechanism for coupling inputs arriving at different cortical layers. Nature 398, 338–341 (1999).

    CAS  Article  Google Scholar 

  32. Svoboda, K., Helmchen, F., Denk, W. & Tank, D. W. Spread of dendritic excitation in layer 2/3 pyramidal neurons in rat barrel cortex in vivo . Nat. Neurosci. 2, 65– 73 (1999).

    CAS  Article  Google Scholar 

  33. Markram, H., Lübke, J., Frotscher, M. & Sakmann, B. Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs . Science 275, 213–215 (1997).

    CAS  Article  Google Scholar 

  34. Bi, G.-Q. & Poo, M.-M. Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type. J. Neurosci. 18, 10464– 10472 (1998).

    CAS  Article  Google Scholar 

  35. Debanne, D., Gähwiler, B. H. & Thompson, S. M. Long-term synaptic plasticity between pairs of individual CA3 pyramidal cells in rat hippocampal slice cultures. J. Physiol. (Lond.) 507, 237–247 ( 1998).

    CAS  Article  Google Scholar 

  36. Magee, J. C. & Johnston. D. A synaptically controlled, associative signal for Hebbian plasticity in hippocampal neurons. Science. 275, 209–213 ( 1997).

    CAS  Article  Google Scholar 

  37. Kistler, W. M. & van Hemmen, J. L. Modeling synaptic plasticity in conjunction with the timing of pre- and postsynaptic action potentials. Neural Comput. 12, 385 –405 (2000).

    CAS  Article  Google Scholar 

  38. Abbott, L. F. & Nelson, S. B. Synaptic plasticity: taming the beast. Nat. Neurosci. 3, 1178– 1183 (2000).

    CAS  Article  Google Scholar 

  39. Segev, I. & Rall, W. Computational study of an excitable dendritic spine. J. Neurophysiol. 60, 499 –523 (1988).

    CAS  Article  Google Scholar 

  40. Softky, W. R. Sub-millisecond coincidence detection in active dendritic trees. Neuroscience 58, 15–41 ( 1994).

    Article  Google Scholar 

  41. Berman, N. J. & Maler, L. Neural architecture of the electrosensory lateral line lobe: adaptations for coincidence detection, a sensory searchlight and frequency-dependent adaptive filtering. J. Exp. Biol. 202, 1243–1253 (1999).

    CAS  PubMed  Google Scholar 

  42. Siegel, M., Körding, K. P. & König, P. Integrating top-down and bottom-up sensory processing by somato-dendritic interactions. J. Comput. Neurosci. 8, 161–173 ( 2000).

    CAS  Article  Google Scholar 

  43. Salinas, E. & Thier, P. Gain modulation: a major computational principle of the central nervous system. Neuron 27, 15–21 (2000).

    CAS  Article  Google Scholar 

  44. Mel, B. W. Synaptic integration in an excitable dendritic tree. J. Neurophysiol. 70, 1086–1101 ( 1993).

    CAS  Article  Google Scholar 

  45. Mel, B. W. Information processing in dendritic trees. Neural Comput. 6, 1031–1085 (1994).

    Article  Google Scholar 

  46. Mel, B. W. in Dendrites (eds. Stuart, G., Spruston, N. & Häusser, M.) 271–289 (Oxford Univ. Press, Oxford, 1999).

    Google Scholar 

  47. Mel, B. W., Ruderman, D. L. & Archie, K. A. Translation-invariant orientation-tuning in visual “complex” cells could derive from intradendritic computations . J. Neurosci. 18, 4325– 4334 (1998).

    CAS  Article  Google Scholar 

  48. Hubel, D. & Wiesel, T. Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. J. Physiol. (Lond.) 160, 106–154 ( 1962).

    CAS  Article  Google Scholar 

  49. Bell, A. J. Self-organization in real neurons: Anti-Hebb in “channel space” . Neural Information Processing Systems 4, 59–67 (1992).

    Google Scholar 

  50. LeMasson, W., Marder, E. & Abbott, L. F. Activity-dependent regulation of conductances in model neurons. Science 259, 1915– 1917 (1993).

    CAS  Article  Google Scholar 

  51. Stemmler, M. & Koch, C. How voltage-dependent conductances can adapt to maximize the information encoded by neuronal firing rate. Nat. Neurosci. 2, 521–527 (1999).

    CAS  Article  Google Scholar 

  52. Laughlin, S. B., van Steveninck, R. R. D. & Anderson, J. C. The metabolic cost of neural information . Nat. Neurosci. 1, 36– 41 (1998).

    CAS  Article  Google Scholar 

  53. Turrigiano, G. G. & Nelson, S. B. Hebb and homestasis in neuronal plasticity. Curr. Opin. Neurobiol 10, 358–364 (2000).

    CAS  Article  Google Scholar 

  54. Riesenhuber, M. & Poggio, T. Models of object recognition. Nat. Neurosci. 3, 1199– 1204 (2000).

    CAS  Article  Google Scholar 

  55. Segev, I. Sound grounds for computing dendrites. Nature 393, 207–208 (1998).

    CAS  Article  Google Scholar 

  56. Schlotterer, G. Responses of the locust descending movement detector neuron to rapidly approaching and withdrawing visual stimuli. Can. J. Zool. 55, 1372–1376 (1977).

    Article  Google Scholar 

  57. Rowell, C. H. F., O'Shea, M. & Williams, J. L. D. The neuronal basis of a sensory analyser, the acridid movement detector system. IV. The preference for small field stimuli . J. Exp. Biol. 68, 157– 185 (1977).

    Google Scholar 

  58. Hatsopoulos, N., Gabbiani, F. & Laurent, G. Elementary computation of object approach by a wide field visual neuron. Science 270, 1000– 1003 (1995).

    CAS  Article  Google Scholar 

  59. Gabbiani, F., Krapp, H. G. & Laurent, G. Computation of object approach by a wide-field, motion-sensitive neuron. J. Neurosci. 19, 1122– 1141 (1999).

    CAS  Article  Google Scholar 

  60. Koch, C., Bernander, Ö. & Douglas, R. J. Do neurons have a voltage or a current threshold for action potential initiation. J. Comput. Neurosci. 2, 63–82 (1995).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

Work in the laboratories of the authors is supported by the NSF/ERC program, NIMH, ONR, Israeli Science Foundation and the BSF. We thank R. Nitzan for Fig. 2a, Y. Manor for Fig. 2b, J. Andersen for the two pyramidal cells in Fig. 2c and d, M. Rapp for Fig. 2e, B. Burke for Fig. 2f, M. Larkum for Fig. 3, F. Gabbiani for Fig. 4 and F. Gabbiani and G. Kreiman for comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christof Koch.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Koch, C., Segev, I. The role of single neurons in information processing. Nat Neurosci 3 (Suppl 11), 1171–1177 (2000). https://doi.org/10.1038/81444

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/81444

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing