Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Dual MAP kinase pathways mediate opposing forms of long-term plasticity at CA3–CA1 synapses

Abstract

Although the function of the p42/p44 mitogen-activated protein (MAP) kinase pathway in long-term potentiation at hippocampal CA3–CA1 synapses has been well described, relatively little is known about the importance of the p38 MAP kinase pathway in synaptic plasticity. Here we show that the p38 MAP kinase pathway, a parallel signaling cascade activated by distinct upstream kinases, mediates the induction of metabotropic glutamate receptor-dependent long-term depression at CA3–CA1 synapses. Thus, two parallel MAP kinase pathways contribute to opposing forms of long-term plasticity at a central synapse.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: p38 MAPK is present in hippocampus.
Figure 2: Blockade of p38 and p42/44 MAPK pathways have complementary effects on LTD and LTP.
Figure 3: Activated p38 MAPK simulated and occluded LTD.
Figure 4: Activated p38 MAPK increases relative variability of EPSCs consistent with a decrease in transmitter release.
Figure 5: LTD-inducing stimuli enhanced phosphorylation of p38 MAPK but not phosphorylation of p42/44 MAPK (ERK).
Figure 6: Effects of LTD-inducing stimuli and mGluR agents on p38 phosphorylation.

Similar content being viewed by others

References

  1. Cobb, M. H. MAP kinase pathways. Prog. Biophys. Mol. Biol. 71, 479–500 (1999).

    Article  CAS  Google Scholar 

  2. York, R. D. et al. Rap1 mediates sustained MAP kinase activation induced by nerve growth factor. Nature 392, 622–626 (1998).

    Article  CAS  Google Scholar 

  3. Bonni, A. et al. Cell survival promoted by the Ras-MAPK signaling pathway by transcription-dependent and -independent mechanisms. Science 286, 358–362 (1999).

    Article  Google Scholar 

  4. Mao, Z., Bonni, A., Xia, F., Nadal-Vicens, M. & Greenberg, M. E. Neuronal activity-dependent cell survival mediated by transcription factor MEF2. Science 286, 785–790 (1999).

    Article  CAS  Google Scholar 

  5. English, J. D. & Sweatt, J. D. Activation of p42 mitogen-activated protein kinase in hippocampal long term potentiation. J. Biol. Chem. 271, 24329–24332 (1996).

    Article  CAS  Google Scholar 

  6. English, J. D. & Sweatt, J. D. A requirement for the mitogen-activated protein kinase cascade in hippocampal long term potentiation. J. Biol. Chem. 272, 19103–19106 (1997).

    Article  CAS  Google Scholar 

  7. Winder, D. G. et al. ERK plays a regulatory role in induction of LTP by theta frequency stimulation and its modulation by beta-adrenergic receptors. Neuron 24, 715–726 (1999).

    Article  CAS  Google Scholar 

  8. Sutton, K. G., McRory, J. E., Guthrie, H., Murphy, T. H. & Snutch, T. P. P/Q-type calcium channels mediate the activity-dependent feedback of syntaxin-1A. Nature 401, 800–804 (1999).

    Article  CAS  Google Scholar 

  9. Martin, K. C. et al. MAP kinase translocates into the nucleus of the presynaptic cell and is required for long-term facilitation in Aplysia. Neuron 18, 899–912 (1997).

    Article  CAS  Google Scholar 

  10. Xia, Z., Dickens, M., Raingeaud, J., Davis, R. J. & Greenberg, M. E. Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science 270, 1326–1331 (1995).

    Article  CAS  Google Scholar 

  11. Oliet, S. H., Malenka, R. C. & Nicoll, R. A. Two distinct forms of long-term depression coexist in CA1 hippocampal pyramidal cells. Neuron 18, 969–982 (1997).

    Article  CAS  Google Scholar 

  12. Dudek, S. M. & Bear, M. F. Homosynaptic long-term depression in area CA1 of hippocampus and effects of N-methyl-D-aspartate receptor blockade. Proc. Natl. Acad. Sci. USA 89, 4363–4367 (1992).

    Article  CAS  Google Scholar 

  13. Mulkey, R. M. & Malenka, R. C. Mechanisms underlying induction of homosynaptic long-term depression in area CA1 of the hippocampus. Neuron 9, 967–975 (1992).

    Article  CAS  Google Scholar 

  14. Mulkey, R. M., Endo, S., Shenolikar, S. & Malenka, R. C. Involvement of a calcineurin/inhibitor-1 phosphatase cascade in hippocampal long-term depression. Nature 369, 486–488 (1994).

    Article  CAS  Google Scholar 

  15. Mulkey, R. M., Herron, C. E. & Malenka, R. C. An essential role for protein phosphatases in hippocampal long-term depression. Science 261, 1051–1055 (1993).

    Article  CAS  Google Scholar 

  16. Kameyama, K., Lee, H. K., Bear, M. F. & Huganir, R. L. Involvement of a postsynaptic protein kinase A substrate in the expression of homosynaptic long-term depression. Neuron 21, 1163–1175 (1998).

    Article  CAS  Google Scholar 

  17. Lee, H. K., Kameyama, K., Huganir, R. L. & Bear, M. F. NMDA induces long-term synaptic depression and dephosphorylation of the GluR1 subunit of AMPA receptors in hippocampus. Neuron 21, 1151–1162 (1998).

    Article  CAS  Google Scholar 

  18. Bolshakov, V. Y. & Siegelbaum, S. A. Postsynaptic induction and presynaptic expression of hippocampal long-term depression. Science 264, 1148–1152 (1994).

    Article  CAS  Google Scholar 

  19. Otani, S. & Connor, J. A. Requirement of rapid Ca2+ entry and synaptic activation of metabotropic glutamate receptors for the induction of long-term depression in adult rat hippocampus. J. Physiol. (Lond.) 511, 761–770 (1998).

    Article  CAS  Google Scholar 

  20. Christie, B. R., Schexnayder, L. K. & Johnston, D. Contribution of voltage-gated Ca2+ channels to homosynaptic long-term depression in the CA1 region in vitro. J. Neurophysiol. 77, 1651–1655 (1997).

    Article  CAS  Google Scholar 

  21. Wilk-Blaszczak, M. A. et al. The mitogen-activated protein kinase p38-2 is necessary for the inhibition of N-type calcium current by bradykinin. J. Neurosci. 18, 112–118 (1998).

    Article  CAS  Google Scholar 

  22. Wu, L. G. & Saggau, P. Presynaptic inhibition of elicited neurotransmitter release. Trends Neurosci. 20, 204–212 (1997).

    Article  CAS  Google Scholar 

  23. Cuenda, A. et al. SB 203580 is a specific inhibitor of a MAP kinase homologue which is stimulated by cellular stresses and interleukin-1. FEBS Lett. 364, 229–233 (1995).

    Article  CAS  Google Scholar 

  24. Dudley, D. T., Pang, L., Decker, S. J., Bridges, A. J. & Saltiel, A. R. A synthetic inhibitor of the mitogen-activated protein kinase cascade. Proc. Natl. Acad. Sci. USA 92, 7686–7689 (1995).

    Article  CAS  Google Scholar 

  25. Kullmann, D. M. & Siegelbaum, S. A. The site of expression of NMDA receptor-dependent long-term potentiation: New fuel for an old fire. Neuron 15, 997–1002 (1995).

    Article  CAS  Google Scholar 

  26. Overstreet, L. S., Pasternak, J. F., Colley, P. A., Slater, N. T. & Trommer, B. L. Metabotropic glutamate receptor mediated long-term depression in developing hippocampus. Neuropharmacology 36, 831–844 (1997).

    Article  CAS  Google Scholar 

  27. Fitzjohn, S. M., Kingston, A. E., Lodge, D. & Collingridge, G. L. DHPG-induced LTD in area CA1 of juvenile rat hippocampus: characterisation and sensitivity to novel mGlu receptor antagonists. Neuropharmacology 38, 1577–1583 (1999).

    Article  CAS  Google Scholar 

  28. Gasparini, F. et al. 2-Methyl-6-(phenylethynyl)-pyridine (MPEP), a potent, selective and systemically active mGlu5 receptor antagonist. Neuropharmacology 38, 1493–1503 (1999).

    Article  CAS  Google Scholar 

  29. Goda, Y. & Stevens, C. F. Synaptic plasticity: the basis of particular types of learning. Curr. Biol. 6, 375–378 (1996).

    Article  CAS  Google Scholar 

  30. Bolshakov, V. Y. & Siegelbaum, S. A. Hippocampal long-term depression: arachidonic acid as a potential retrograde messenger. Neuropharmacology 34, 1581–1587 (1995).

    Article  CAS  Google Scholar 

  31. Normandin, M. et al. Involvement of the 12-lipoxygenase pathway of arachidonic acid metabolism in homosynaptic long-term depression of the rat hippocampus. Brain Res. 730, 40–46 (1996).

    Article  CAS  Google Scholar 

  32. Borsch-Haubold, A. G., Kramer, R. M. & Watson, S. P. Phosphorylation and activation of cytosolic phospholipase A2 by 38-kDa mitogen-activated protein kinase in collagen-stimulated human platelets. Eur. J. Biochem. 245, 751–759 (1997).

    Article  CAS  Google Scholar 

  33. Hii, C. S. et al. Stimulation of p38 phosphorylation and activity by arachidonic acid in HeLa cells, HL60 promyelocytic leukemic cells, and human neutrophils. Evidence for cell type-specific activation of mitogen-activated protein kinases. J. Biol. Chem. 273, 19277–19282 (1998).

    Article  CAS  Google Scholar 

  34. Weng, G., Bhalla, U. S. & Iyengar, R. Complexity in biological signaling systems. Science 284, 92–96 (1999).

    Article  CAS  Google Scholar 

  35. Baudry, M., Arst, D., Oliver, M. & Lynch, G. Development of glutamate binding sites and their regulation by calcium in rat hippocampus. Brain Res. 227, 37–48 (1981).

    Article  CAS  Google Scholar 

  36. Bolshakov, V. Y. & Siegelbaum, S. A. Regulation of hippocampal transmitter release during development and long-term potentiation. Science 269, 1730–1734 (1995).

    Article  CAS  Google Scholar 

  37. Khokhlatchev, A. et al. Reconstitution of mitogen-activated protein kinase phosphorylation cascades in bacteria. Efficient synthesis of active protein kinases. J. Biol. Chem. 272, 11057–11062 (1997).

    Article  CAS  Google Scholar 

  38. Bradford, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254 (1976).

    Article  CAS  Google Scholar 

  39. Ferraguti, F. et al. Immunohistochemical localization of the mGluR1 metabotropic glutamate receptor in the adult rodent forebrain: evidence for a differential distribution of mGluR1 splice variants. J. Comp. Neurol. 400, 391–407 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank E. Frank for computer programs and suggestions, A. Moschin and M. Bergamaschi for secretarial assistance, C. Chiamulera and M. Corsi for support and discussions, and E. Odell for help in preparing figures. Supported by Glaxo Wellcome S.p.A. (F.B. and L.C.), the Whitehall Foundation (V.B.), and grants NS-29832 (S.A.S.) and DK-34128 (M.H.C.) from the U.S.P.H.S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Siegelbaum.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bolshakov, V., Carboni, L., Cobb, M. et al. Dual MAP kinase pathways mediate opposing forms of long-term plasticity at CA3–CA1 synapses. Nat Neurosci 3, 1107–1112 (2000). https://doi.org/10.1038/80624

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/80624

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing