Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Reduction of endogenous transforming growth factors β prevents ontogenetic neuron death

Abstract

We show that following immunoneutralization of endogenous transforming growth factors β (TGF-β) in the chick embryo, ontogenetic neuron death of ciliary, dorsal root and spinal motor neurons was largely prevented, and neuron losses following limb bud ablation were greatly reduced. Likewise, preventing TGF-β signaling by treatment with a TβR-II fusion protein during the period of ontogenetic cell death in the ciliary ganglion rescued all neurons that normally die. TUNEL staining revealed decreased numbers of apoptotic cells following antibody treatment. Exogenous TGF-β rescued the TGF-β-deprived phenotype. We conclude that TGF-β is critical in regulating ontogenetic neuron death as well as cell death following neuronal target deprivation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Neutralization of rcTGF-b or TGF-b activity from homgenates by anti-TGF-β or TGF-II-Fc.
Figure 2: Morphology and neuron numbers in chick ciliary ganglia at E10, which is after the main period of ontogenetic ciliary neuron death.
Figure 3: Neuron numbers and apoptosis in ciliary ganglia (CG), dorsal root ganglia (L3; DRG) and the lumbar motoneuron column of embryos treated with anti-TGF-β.
Figure 4: Rescue of the normal phenotype of CG and motoneurons in anti-TGF-β-treated embryos by administration of TGF-β.
Figure 5: Anti-TGF-β rescues lumbar dorsal root ganglia (DRG) and motoneurons (MN) following target deprivation.
Figure 6: TβR-II immunoreactivity in E10 ciliary ganglia following treatment with anti-TGF-β antibodies from E6 to E10.

Similar content being viewed by others

References

  1. Roberts, A. B. & Sporn, M. B. in Handbook of Experimental Pharmacology Vol. 95 (eds. Sporn M. B. & Roberts A. B.) 419 –472 (Springer, Heidelberg, 1990).

    Google Scholar 

  2. Krieglstein, K., Rufer, M., Suter-Crazzolara, C. & Unsicker, K. Neural functions of the transforming growth factor β. Int. J. Dev. Neurosci. 13, 301–315 (1995).

    Article  CAS  PubMed  Google Scholar 

  3. Goumans, M. J. & Mummery, C. Functional analysis of the TGFbeta receptor/Smad pathway through gene ablation in mice. Int. J. Dev. Biol. 44, 253–265 ( 2000).

    CAS  PubMed  Google Scholar 

  4. Flanders, K. C. et al. Immunhistochemical localization of transforming growth factor-βs in the nervous system of the mouse embryo. Development 113, 183–191 (1991).

    CAS  PubMed  Google Scholar 

  5. Unsicker, K., Flanders, K. C., Cissel, D. S., Lafyatis, R. & Sporn, M. B. Transforming growth factor beta isoforms in the adult rat central and peripheral nervous system. Neuroscience 44, 613–625 (1991).

    Article  CAS  PubMed  Google Scholar 

  6. Thoenen, H. in Handbook of Experimental Pharmacology, Vol. 33 (eds. Blaschko, H. & Muscholl, E.) 813–844 (Springer, Heidelberg, 1990).

    Google Scholar 

  7. Krieglstein, K. et al. Glial cell line-derived neurotrophic factor requires transforming growth factor-beta for exerting its full neurotrophic potential on peripheral and CNS neurons. J. Neurosci. 18, 9822– 9834 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Korsching, S. The neurotrophic factor concept: a reexamination. J. Neurosci. 13, 2739–2748 ( 1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Oppenheim, R. W. Cell death during development of the nervous system. Annu. Rev. Neurosci. 14, 453–501 ( 1991).

    Article  CAS  PubMed  Google Scholar 

  10. Pettmann, B. & Henderson, C. E. Neuronal cell death. Neuron 20, 633–647 ( 1998).

    Article  CAS  PubMed  Google Scholar 

  11. Krieglstein, K., Farkas, L. & Unsicker, K. TGF-β regulates the survival of ciliary ganglionic neurons synergistically with ciliary neurotrophic factor and neurotrophins . J. Neurobiol. 37, 563– 572 (1998).

    Article  CAS  PubMed  Google Scholar 

  12. Landmesser, L. & Pilar, G. Synaptic formation during embryogenesis on ganglion cells lacking a periphery. J. Physiol. (Lond.) 247, 715–736 (1974).

    Article  Google Scholar 

  13. Oppenheim, R. W. et al. Developing motor neurons rescued from programmed and axotomy-induced cell death by GDNF. Nature 373, 344– 346 (1995).

    Article  CAS  PubMed  Google Scholar 

  14. Hamburger, V. Cell death in the development of the lateral motor column of the chick embryo . J. Comp. Neurol. 160, 535– 546 (1975).

    Article  CAS  PubMed  Google Scholar 

  15. Caldero, J. et al. Peripheral target regulation of the development and survival of spinal sensory and motor neurons in the chick embryo. J. Neurosci. 18, 356–370 ( 1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hollyday, M. & Hamburger, V. Reduction of the naturally occurring motor neuron loss by enlargement of the periphery. J. Comp. Neurol. 170, 311–320 ( 1976).

    Article  CAS  PubMed  Google Scholar 

  17. Hamburger, V. Regression versus peripheral control of differentiation in motor hypoplasia . Amer. J. Anat. 102, 365– 410 (1958).

    Article  CAS  PubMed  Google Scholar 

  18. Dahm, L. M. & Landmesser, L. T. The regulation of intramuscular nerve branching during normal development and following activity blockade . Dev. Biol. 130, 621–644 (1988).

    Article  CAS  PubMed  Google Scholar 

  19. Dahm, L. M. & Landmesser, L. T. The regulation of synaptogenesis during normal development and following activity blockade. J. Neurosci. 11, 238–255 ( 1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Oppenheim, R. W., Chu-Wang, I. W. & Maderdrut, J. L. Cell death of motoneurons in the chick embryo spinal cord. III. The differentiation of motoneurons prior to their induced degeneration following limb-bud removal. J. Comp. Neurol. 177, 87–111 (1978).

    Article  CAS  PubMed  Google Scholar 

  21. Nishi, R. Target-derived molecules that influence the development of neurons in the avian ciliary ganglion. J. Neurobiol. 25, 612–619 (1994).

    Article  CAS  PubMed  Google Scholar 

  22. Heller, S. et al. Analysis of function and expression of the chick GPA receptor (GPAR alpha) suggests multiple roles in neuronal development. Development 121, 2681–2693 (1995).

    CAS  PubMed  Google Scholar 

  23. Lewin, G. R. & Barde, Y. A. Physiology of the neurotrophins . Annu. Rev. Neurosci. 19, 289– 317 (1996).

    Article  CAS  PubMed  Google Scholar 

  24. Oppenheim, R. W. Neurotrophic survival molecules for motoneurons: an embarrassment of riches . Neuron 17, 195–197 (1996).

    Article  CAS  PubMed  Google Scholar 

  25. Martinou, J. C. et al. Overexpression of BCL-2 in transgenic mice protects neurons from naturally occurring cell death and experimental ischemia. Neuron 13, 1017–1030 ( 1994).

    Article  CAS  PubMed  Google Scholar 

  26. Farlie, P. G., Dringen, R., Rees, S. M., Kannourakis, G. & Bernard, O. bcl-2 transgene expression can protect neurons against developmental and induced cell death. Proc. Natl. Acad. Sci. USA 92, 4397–4401 ( 1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zanjani, H. S., Vogel, M. W., Delhaye-Bouchaud, N., Martinou, J. C. & Mariani, J. Increased cerebellar Purkinje cell numbers in mice overexpressing a human bcl-2 transgene. J. Comp. Neurol. 374, 332–341 ( 1996).

    Article  CAS  PubMed  Google Scholar 

  28. Parsadanian, A. S., Cheng, Y., Keller-Peck, C. R., Holtzman, D. M. & Snider, W. D. Bcl-xL is an antiapoptotic regulator for postnatal CNS neurons. J. Neurosci. 18, 1009–1019 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Knudson, C. M., Tung, K. S., Tourtellotte, W. G., Brown, G. A. & Korsmeyer, S. J. Bax-deficient mice with lymphoid hyperplasia and male germ cell death. Science 270, 96–99 (1995).

    Article  CAS  PubMed  Google Scholar 

  30. Deckwerth, T. L. et al. BAX is required for neuronal death after trophic factor deprivation and during development. Neuron 17, 401– 411 (1996).

    Article  CAS  PubMed  Google Scholar 

  31. Cecconi, F., Alvarez-Bolado, G., Meyer, B. I., Roth, K. A. & Gruss, P. Apaf1 (CED-4 homolog) regulates programmed cell death in mammalian development. Cell 94, 727–737 (1998).

    Article  CAS  PubMed  Google Scholar 

  32. Yoshida, H. et al. Apaf1 is required for mitochondrial pathways of apoptosis and brain development. Cell 94, 739– 750 (1998).

    Article  CAS  PubMed  Google Scholar 

  33. Kuida, K. et al. Decreased apoptosis in the brain and premature lethality in CPP32-deficient mice. Nature 384, 368–372 (1996).

    Article  CAS  PubMed  Google Scholar 

  34. Kuida, K. et al. Reduced apoptosis and cytochrome c-mediated caspase activation in mice lacking caspase 9. Cell 94, 325– 337 (1998).

    Article  CAS  PubMed  Google Scholar 

  35. Hakem, R. et al. Differential requirement for caspase 9 in apoptotic pathways in vivo. Cell 94, 339– 352 (1998).

    Article  CAS  PubMed  Google Scholar 

  36. Raoul, C., Henderson, C. E. & Pettmann, B. Programmed cell death of embryonic motoneurons triggered through the Fas death receptor. J. Cell Biol. 147, 1049–1062 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Barker, P. A. p75NTR: A study in contrasts. Cell Death Differ. 5, 346–356 (1998).

    Article  CAS  PubMed  Google Scholar 

  38. Frade, J. M. & Barde, Y. A. Genetic evidence for cell death mediated by nerve growth factor and the neurotrophin receptor p75 in the developing mouse retina and spinal cord. Development 126, 683–690 (1999).

    CAS  PubMed  Google Scholar 

  39. Frade, J. M., Rodriguez-Tebar, A. & Barde, Y. A. Induction of cell death by endogenous nerve growth factor through its p75 receptor. Nature 383, 166–168 (1996).

    Article  CAS  PubMed  Google Scholar 

  40. Bamji, S. X. et al. The p75 neurotrophin receptor mediates neuronal apoptosis and is essential for naturally occurring sympathetic neuron death. J. Cell Biol. 140, 911–923 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Buske, C. et al. TGF-beta inhibits growth and induces apoptosis in leukemic B cell precursors. Leukemia 11, 386– 392 (1996).

    Article  Google Scholar 

  42. Arsura, M., FitzGerald, M. J., Fausto, N. & Sonenshein, G. E. Nuclear factor-kappaB/Rel blocks transforming growth factor beta1-induced apoptosis of murine hepatocyte cell lines. Immunity 5, 31–59 (1997).

    Article  Google Scholar 

  43. de Luca, A., Weller, M. & Fontana, A. TGF-beta-induced apoptosis of cerebellar granule neurons is prevented by depolarization. J. Neurosci. 16, 4174–4185 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Graham, A., Koentges, G. & Lumsden, A. Neural crest apoptosis and the establishment of craniofacial pattern: an honorable death. Mol. Cell. Neurosci. 8 , 76–83 (1996).

    Article  CAS  PubMed  Google Scholar 

  45. Furuta, Y., Piston, D.W. & Hogan, B. L. Bone morphogenetic proteins (BMPs) as regulators of dorsal forebrain development. Development 124, 2203–2212 (1997).

    CAS  PubMed  Google Scholar 

  46. Schober, A. et al. Glial cell line-derived neurotrophic factor rescues target-deprived sympathetic spinal cord neurons but requires transforming growth factor-beta as cofactor in vivo. J. Neurosci. 19, 2008–2015 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Oppenheim, R. W. et al. Biological studies of a putative avian muscle-derived neurotrophic factor that prevents naturally occurring motoneuron death in vivo. J. Neurobiol. 24, 1065–1079 (1993).

    Article  CAS  PubMed  Google Scholar 

  48. Oppenheim, R. W. et al. Modulation of early but not later stages of programmed cell death in embryonic avian spinal cord by sonic hedgehog. Mol. Cell. Neurosci. 13, 348–361 ( 1999).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank C.E. Henderson, C. Kalcheim and R. Klein for comments on the manuscript, and U. Hinz, I. Stenull, J. Fey and S.W. Wang for technical assistance. This work was supported by grants from the Deutsche Forschungsgemeinschaft to K.K. and K.U. and by NIH grant NS-20402 to R.W.O.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kerstin Krieglstein.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krieglstein, K., Richter, S., Farkas, L. et al. Reduction of endogenous transforming growth factors β prevents ontogenetic neuron death. Nat Neurosci 3, 1085–1090 (2000). https://doi.org/10.1038/80598

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/80598

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing