Coding of visual information by precisely correlated spikes in the lateral geniculate nucleus

Article metrics


Correlated firing among neurons is widespread in the nervous system. Precisely correlated spiking, occurring on a millisecond time scale, has recently been observed among neurons in the lateral geniculate nucleus with overlapping receptive fields. We have used an information-theoretic analysis to examine the role of these correlations in visual coding. Considerably more information can be extracted from two cells if temporal correlations between them are considered. The percentage increase in information depends on the degree of correlation; the average increase is approximately 20% for strongly correlated pairs. Thus, precise temporal correlation could be used as an additional information channel from thalamus to visual cortex.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Correlated spiking between geniculate neurons with overlapping receptive fields.
Figure 2: Spike-sorting procedure.
Figure 3: Gain of information by considering the correlation between a pair of cells.
Figure 4: Dependence of increase in information on strength of correlation.


  1. 1

    Adrian, E. D. The Basis of Sensation (W.W. Norton, New York, 1928 ).

  2. 2

    Meister, M. Multineuronal codes in retinal signaling. Proc. Natl. Acad. Sci. USA 93, 609–614 (1996).

  3. 3

    Rodieck, R. W. Maintained activity of cat retinal ganglion cells. J. Neurophysiol. 30, 1043–1071 (1967).

  4. 4

    Mastronarde, D. N. Correlated firing of cat retinal ganglion cells. I. Spontaneously active inputs to X- and Y-cells. J. Neurophysiol. 49, 303–324 (1983).

  5. 5

    Mastronarde, D. N. Correlated firing of cat retinal ganglion cells. II. Responses of X- and Y-cells to single quantal events. J. Neurophysiol. 49, 325–349 (1983).

  6. 6

    Mastronarde, D. N. Interactions between ganglions cells in cat retina. J. Neurophysiol. 49, 350–365 (1983).

  7. 7

    Meister, M., Lagnado, L. & Baylor, D. A. Concerted signaling by retinal ganglion cells. Science 270, 1207–1210 (1995).

  8. 8

    Alonso, J. M., Usrey, W. M. & Reid, R. C. Precisely correlated firing in cells of the al geniculate nucleus. Nature 383, 815– 819 (1996).

  9. 9

    Sillito, A. M., Jones, H. E., Gerstein, G. L. & West, D. C. Feature-linked synchronization of thalamic relay cell firing induced by feedback from the visual cortex. Nature 369, 479– 482 (1994).

  10. 10

    Toyama, K., Kimura, M. & Tanaka, K. Cross-correlation analysis of interneuronal connectivity in cat visual cortex. J. Neurophysiol. 46, 191–201 (1981).

  11. 11

    Ts'o, D. Y., Gilbert, C. D. & Wiesel, T. N. Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis. J. Neurosci. 6, 1160– 1170 (1986).

  12. 12

    Eckhorn, R. et al. Coherent oscillations: a mechanism of feature linking in the visual cortex? Multiple electrode and correlation analyses in the cat. Biol. Cybern. 60, 121–130 (1988).

  13. 13

    Nelson, J. I., Salin, P. A., Munk, M. H. J., Arzi, M. & Bullier, J. Spatial and temporal coherence in cortico-cortical connections: a cross-correlation study in areas 17 and 18 in the cat. Vis. Neurosci. 9, 21– 37 (1992).

  14. 14

    Ghose, G. M., Ohzawa, I. & Freeman, R. D. Receptive-field maps of correlated discharge between pairs of neurons in the cat's visual cortex. J. Neurophysiol. 71, 330–346 (1994).

  15. 15

    Singer, W. & Gray, C. M. Visual feature integration and the temporal correlation hypothesis. Annu. Rev. Neurosci. 18, 555–586 (1995).

  16. 16

    Neuenschwander, S. & Singer, W. Long-range synchronization of oscillatory light responses in the cat retina and lateral geniculate nucleus . Nature 379, 728–732 (1996).

  17. 17

    deCharms, R. C. & Merzenich, M. M. Primary cortical representation of sounds by the coordination of action-potential timing. Nature 381, 610–613 (1996).

  18. 18

    Abeles, M., Bergman, H., Margalit, E. & Vaadia, E. Spatiotemporal firing patterns in the frontal cortex of behaving monkeys. J. Neurophysiol. 70, 1629–1638 (1993).

  19. 19

    Murthy, V. N. & Fetz, E. E. Coherent 25- to 35-Hz oscillations in the sensorimotor cortex of awake behaving monkeys. Proc. Natl Acad. Sci. USA. 89, 5670–5674 (1992).

  20. 20

    Swadlow, H. A., Beloozerova, I. N. & Sirota, M. G. Sharp, local synchrony among putative feed-forward inhibitory interneurons of rabbit somatosensory cortex. J. Neurophysiol. 79, 567–582 (1998).

  21. 21

    Guido, W., Lu, S. M., Vaughan, J. W, Godwin, D. W. & Sherman, S. M. Receiver operating characteristic (ROC) analysis of neurons in the cat's lateral geniculate nucleus during tonic and burst response mode. Vis. Neurosci. 12, 723– 741 (1995).

  22. 22

    Sherman, S. M. Dual response modes in lateral geniculate neurons: mechanisms and functions Vis. Neurosci.13, 205– 213 (1997).

  23. 23

    Bialek, W., Rieke, F., de Ruyter van Steveninck, R. R. & Warland, D. Reading a neural code. Science 252, 1854 –1857 (1991).

  24. 24

    Shannon, C. E. & Weaver, W. The Mathematical Theory of Communication(Univ. Illinois, Chicago, 1963 ).

  25. 25

    Sutter, E. E. in Advanced Methods of Physiological Systems Modeling, Vol. 1, (ed V. Marmarelis)303–315 (Univ. Southern California, Los Angeles, 1987).

  26. 26

    Reid, R. C., Victor, J. D. & Shapley, R. M. The use of m-sequences in the analysis of visual neurons: Linear receptive field properties. Vis. Neurosci. 14, 1015–1027 (1997).

  27. 27

    Usrey, W. M, Reppas, J. B. & Reid, R. C. Paired-spike interactions and synaptic efficacy of retinal inputs to thalamus. Nature (in press).

  28. 28

    Cleland B. G., Dubin M. W. & Levick W. R. Simultaneous recording of input and output of lateral geniculate neurones. Nature 231, 191– 192 (1971).

  29. 29

    Cleland B. G., Dubin M. W. & Levick W. R. Sustained and transient neurones in the cat's retina and lateral geniculate nucleus. J. Physiol. 473– 496 (1971).

  30. 30

    Cleland B. G. in Visual Neuroscience (eds Pettigrew, J. D., Sanderson, K. S. & Levick, W. R) 111–120 (Cambridge Univ. Press, London, 1986).

  31. 31

    Hubel, D. H. & Wiesel, T. N. Integrative action in the cat's lateral geniculate body. J. Physiol. 155, 385–398 (1961).

  32. 32

    Kaplan E., Purpura K. & Shapley R. M. Contrast affects the transmission of visual information through the mammalian lateral geniculate nucleus. J. Physiol. 391, 267–288 (1987).

  33. 33

    Usrey, W. M. & Reid, R. C. Synchronous activity in the visual system. Annu. Rev. Physiol. 61 (in press).

  34. 34

    Brivanlou I. H., Warland, D. K. & Meister M. Mechanisms of concerted firing among retinal ganglion cells. Neuron 20, 527–539 (1998).

  35. 35

    Panzeri, S. & Treves, A. Analytical estimates of limited sampling biases in different information measures. Network: Computation in Neural Systems 7, 87–107 (1996).

  36. 36

    Perkel, D. H., Gerstein, G. L. & Moore, G. P. Neuronal spike trains and stochastic point processes. II. Simultaneous spike trains. Biophys. J. 7, 419–440 (1967).

Download references


We are grateful to T. Wiesel for his support during the early phase of this work. K. Gegenfurtner allowed us to use his library of subroutines, YARL, to write programs for our visual stimuli. Technical assistance was provided by K. McGowan, C. Gallagher and D. Landsberger. The research was supported by NIH EY05253, EY06604, EY10115, the Klingenstein Fund, Fulbright/MEC and the Charles H. Revson Foundation. Y.D. was a Schering-Plough Fellow of the Life Sciences Research Foundation.

Author information

Correspondence to R. Clay Reid.

Rights and permissions

Reprints and Permissions

About this article

Further reading