Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Coding of visual information by precisely correlated spikes in the lateral geniculate nucleus


Correlated firing among neurons is widespread in the nervous system. Precisely correlated spiking, occurring on a millisecond time scale, has recently been observed among neurons in the lateral geniculate nucleus with overlapping receptive fields. We have used an information-theoretic analysis to examine the role of these correlations in visual coding. Considerably more information can be extracted from two cells if temporal correlations between them are considered. The percentage increase in information depends on the degree of correlation; the average increase is approximately 20% for strongly correlated pairs. Thus, precise temporal correlation could be used as an additional information channel from thalamus to visual cortex.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Correlated spiking between geniculate neurons with overlapping receptive fields.
Figure 2: Spike-sorting procedure.
Figure 3: Gain of information by considering the correlation between a pair of cells.
Figure 4: Dependence of increase in information on strength of correlation.

Similar content being viewed by others


  1. Adrian, E. D. The Basis of Sensation (W.W. Norton, New York, 1928 ).

    Google Scholar 

  2. Meister, M. Multineuronal codes in retinal signaling. Proc. Natl. Acad. Sci. USA 93, 609–614 (1996).

    Article  CAS  Google Scholar 

  3. Rodieck, R. W. Maintained activity of cat retinal ganglion cells. J. Neurophysiol. 30, 1043–1071 (1967).

    Article  CAS  Google Scholar 

  4. Mastronarde, D. N. Correlated firing of cat retinal ganglion cells. I. Spontaneously active inputs to X- and Y-cells. J. Neurophysiol. 49, 303–324 (1983).

    Article  CAS  Google Scholar 

  5. Mastronarde, D. N. Correlated firing of cat retinal ganglion cells. II. Responses of X- and Y-cells to single quantal events. J. Neurophysiol. 49, 325–349 (1983).

    Article  CAS  Google Scholar 

  6. Mastronarde, D. N. Interactions between ganglions cells in cat retina. J. Neurophysiol. 49, 350–365 (1983).

    Article  CAS  Google Scholar 

  7. Meister, M., Lagnado, L. & Baylor, D. A. Concerted signaling by retinal ganglion cells. Science 270, 1207–1210 (1995).

    Article  CAS  Google Scholar 

  8. Alonso, J. M., Usrey, W. M. & Reid, R. C. Precisely correlated firing in cells of the al geniculate nucleus. Nature 383, 815– 819 (1996).

    Article  CAS  Google Scholar 

  9. Sillito, A. M., Jones, H. E., Gerstein, G. L. & West, D. C. Feature-linked synchronization of thalamic relay cell firing induced by feedback from the visual cortex. Nature 369, 479– 482 (1994).

    Article  CAS  Google Scholar 

  10. Toyama, K., Kimura, M. & Tanaka, K. Cross-correlation analysis of interneuronal connectivity in cat visual cortex. J. Neurophysiol. 46, 191–201 (1981).

    Article  CAS  Google Scholar 

  11. Ts'o, D. Y., Gilbert, C. D. & Wiesel, T. N. Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis. J. Neurosci. 6, 1160– 1170 (1986).

    Article  CAS  Google Scholar 

  12. Eckhorn, R. et al. Coherent oscillations: a mechanism of feature linking in the visual cortex? Multiple electrode and correlation analyses in the cat. Biol. Cybern. 60, 121–130 (1988).

    Article  CAS  Google Scholar 

  13. Nelson, J. I., Salin, P. A., Munk, M. H. J., Arzi, M. & Bullier, J. Spatial and temporal coherence in cortico-cortical connections: a cross-correlation study in areas 17 and 18 in the cat. Vis. Neurosci. 9, 21– 37 (1992).

    Article  CAS  Google Scholar 

  14. Ghose, G. M., Ohzawa, I. & Freeman, R. D. Receptive-field maps of correlated discharge between pairs of neurons in the cat's visual cortex. J. Neurophysiol. 71, 330–346 (1994).

    Article  CAS  Google Scholar 

  15. Singer, W. & Gray, C. M. Visual feature integration and the temporal correlation hypothesis. Annu. Rev. Neurosci. 18, 555–586 (1995).

    Article  CAS  Google Scholar 

  16. Neuenschwander, S. & Singer, W. Long-range synchronization of oscillatory light responses in the cat retina and lateral geniculate nucleus . Nature 379, 728–732 (1996).

    Article  CAS  Google Scholar 

  17. deCharms, R. C. & Merzenich, M. M. Primary cortical representation of sounds by the coordination of action-potential timing. Nature 381, 610–613 (1996).

    Article  CAS  Google Scholar 

  18. Abeles, M., Bergman, H., Margalit, E. & Vaadia, E. Spatiotemporal firing patterns in the frontal cortex of behaving monkeys. J. Neurophysiol. 70, 1629–1638 (1993).

    Article  CAS  Google Scholar 

  19. Murthy, V. N. & Fetz, E. E. Coherent 25- to 35-Hz oscillations in the sensorimotor cortex of awake behaving monkeys. Proc. Natl Acad. Sci. USA. 89, 5670–5674 (1992).

    Article  CAS  Google Scholar 

  20. Swadlow, H. A., Beloozerova, I. N. & Sirota, M. G. Sharp, local synchrony among putative feed-forward inhibitory interneurons of rabbit somatosensory cortex. J. Neurophysiol. 79, 567–582 (1998).

    Article  CAS  Google Scholar 

  21. Guido, W., Lu, S. M., Vaughan, J. W, Godwin, D. W. & Sherman, S. M. Receiver operating characteristic (ROC) analysis of neurons in the cat's lateral geniculate nucleus during tonic and burst response mode. Vis. Neurosci. 12, 723– 741 (1995).

    Article  CAS  Google Scholar 

  22. Sherman, S. M. Dual response modes in lateral geniculate neurons: mechanisms and functions Vis. Neurosci.13, 205– 213 (1997).

    Article  Google Scholar 

  23. Bialek, W., Rieke, F., de Ruyter van Steveninck, R. R. & Warland, D. Reading a neural code. Science 252, 1854 –1857 (1991).

    Article  CAS  Google Scholar 

  24. Shannon, C. E. & Weaver, W. The Mathematical Theory of Communication(Univ. Illinois, Chicago, 1963 ).

    Google Scholar 

  25. Sutter, E. E. in Advanced Methods of Physiological Systems Modeling, Vol. 1, (ed V. Marmarelis)303–315 (Univ. Southern California, Los Angeles, 1987).

    Google Scholar 

  26. Reid, R. C., Victor, J. D. & Shapley, R. M. The use of m-sequences in the analysis of visual neurons: Linear receptive field properties. Vis. Neurosci. 14, 1015–1027 (1997).

    Article  CAS  Google Scholar 

  27. Usrey, W. M, Reppas, J. B. & Reid, R. C. Paired-spike interactions and synaptic efficacy of retinal inputs to thalamus. Nature (in press).

  28. Cleland B. G., Dubin M. W. & Levick W. R. Simultaneous recording of input and output of lateral geniculate neurones. Nature 231, 191– 192 (1971).

    CAS  Google Scholar 

  29. Cleland B. G., Dubin M. W. & Levick W. R. Sustained and transient neurones in the cat's retina and lateral geniculate nucleus. J. Physiol. 473– 496 (1971).

  30. Cleland B. G. in Visual Neuroscience (eds Pettigrew, J. D., Sanderson, K. S. & Levick, W. R) 111–120 (Cambridge Univ. Press, London, 1986).

    Google Scholar 

  31. Hubel, D. H. & Wiesel, T. N. Integrative action in the cat's lateral geniculate body. J. Physiol. 155, 385–398 (1961).

    Article  CAS  Google Scholar 

  32. Kaplan E., Purpura K. & Shapley R. M. Contrast affects the transmission of visual information through the mammalian lateral geniculate nucleus. J. Physiol. 391, 267–288 (1987).

    Article  CAS  Google Scholar 

  33. Usrey, W. M. & Reid, R. C. Synchronous activity in the visual system. Annu. Rev. Physiol. 61 (in press).

  34. Brivanlou I. H., Warland, D. K. & Meister M. Mechanisms of concerted firing among retinal ganglion cells. Neuron 20, 527–539 (1998).

    Article  CAS  Google Scholar 

  35. Panzeri, S. & Treves, A. Analytical estimates of limited sampling biases in different information measures. Network: Computation in Neural Systems 7, 87–107 (1996).

    Google Scholar 

  36. Perkel, D. H., Gerstein, G. L. & Moore, G. P. Neuronal spike trains and stochastic point processes. II. Simultaneous spike trains. Biophys. J. 7, 419–440 (1967).

    Article  CAS  Google Scholar 

Download references


We are grateful to T. Wiesel for his support during the early phase of this work. K. Gegenfurtner allowed us to use his library of subroutines, YARL, to write programs for our visual stimuli. Technical assistance was provided by K. McGowan, C. Gallagher and D. Landsberger. The research was supported by NIH EY05253, EY06604, EY10115, the Klingenstein Fund, Fulbright/MEC and the Charles H. Revson Foundation. Y.D. was a Schering-Plough Fellow of the Life Sciences Research Foundation.

Author information

Authors and Affiliations


Corresponding author

Correspondence to R. Clay Reid.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dan, Y., Alonso, JM., Usrey, W. et al. Coding of visual information by precisely correlated spikes in the lateral geniculate nucleus. Nat Neurosci 1, 501–507 (1998).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing