Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

New role of δ2-glutamate receptors in AMPA receptor trafficking and cerebellar function

Abstract

Previous gene knockout studies have shown that the orphan glutamate receptor δ2 (GluRδ2) is critically involved in synaptogenesis between parallel fibers and Purkinje cells during development. However, the precise function of GluRδ2 and whether it is functional in the mature cerebellum remain unclear. To address these issues, we developed an antibody specific for the putative ligand-binding region of GluRδ2, and application of this antibody to cultured Purkinje cells induced AMPA receptor endocytosis, attenuated synaptic transmission and abrogated long-term depression. Moreover, injection of this antibody into the subarachnoidal supracerebellar space of adult mice caused transient cerebellar dysfunction, such as ataxic gait and poor performance in the rotorod test. These results indicate that GluRδ2 is involved in AMPA receptor trafficking and cerebellar function in adult mice.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Membrane topology of the glutamate receptor and its ligand binding sites.
Figure 2: An antibody targeted to the GluRδ2 H2 region (anti-δH2) specifically recognized the extracellular region of GluRδ2.
Figure 3: Ligation by anti-δH2 reduced the current through the GluRδ2Lc channel.
Figure 4: Treatment with anti-δH2 attenuated synaptic transmission with affecting neither eEPSC kinetics nor PPF.
Figure 5: Application of anti-δH2 blocked induction of LTD.
Figure 6: Treatment of Purkinje cells with anti-δH2 decreased the levels of synaptic AMPA receptors.
Figure 7: Cerebellar exposure to anti-δH2 impaired motor coordination.

Similar content being viewed by others

References

  1. Mayat, E., Petralia, R.S., Wang, Y.X. & Wenthold, R.J. Immunoprecipitation, immunoblotting, and immunocytochemistry studies suggest that glutamate receptor δ subunits form novel postsynaptic receptor complexes. J. Neurosci. 15, 2533–2546 (1995).

    Article  CAS  Google Scholar 

  2. Lomeli, H. et al. The rat δ1 and δ2 subunits extend the excitatory amino acid receptor family. FEBS Lett. 315, 318–322 (1993).

    Article  CAS  Google Scholar 

  3. Yamazaki, M., Araki, K., Shibata, A. & Mishina, M. Molecular cloning of a cDNA encoding a novel member of the mouse glutamate receptor channel family. Biochem. Biophys. Res. Commun. 183, 886–892 (1992).

    Article  CAS  Google Scholar 

  4. Landsend, A.S. et al. Differential localization of delta glutamate receptors in the rat cerebellum: coexpression with AMPA receptors in parallel fiber-spine synapses and absence from climbing fiber-spine synapses. J. Neurosci. 17, 834–842 (1997).

    Article  CAS  Google Scholar 

  5. Kano, M. & Kato, M. Quisqualate receptors are specifically involved in cerebellar synaptic plasticity. Nature 325, 276–279 (1987).

    Article  CAS  Google Scholar 

  6. Kurihara, H. et al. Impaired parallel fiber→Purkinje cell synapse stabilization during cerebellar development of mutant mice lacking the glutamate receptor delta2 subunit. J. Neurosci. 17, 9613–9623 (1997).

    Article  CAS  Google Scholar 

  7. Kashiwabuchi, N. et al. Impairment of motor coordination, Purkinje cell synapse formation, and cerebellar long-term depression in GluR δ2 mutant mice. Cell 81, 245–252 (1995).

    Article  CAS  Google Scholar 

  8. Jeromin, A., Huganir, R.L. & Linden, D.J. Suppression of the glutamate receptor delta 2 subunit produces a specific impairment in cerebellar long-term depression. J. Neurophysiol. 76, 3578–3583 (1996).

    Article  CAS  Google Scholar 

  9. Stern-Bach, Y. et al. Agonist selectivity of glutamate receptors is specified by two domains structurally related to bacterial amino acid-binding proteins. Neuron 13, 1345–1357 (1994).

    Article  CAS  Google Scholar 

  10. Kuusinen, A., Arvola, M. & Keinanen, K. Molecular dissection of the agonist binding site of an AMPA receptor. EMBO J. 14, 6327–6332 (1995).

    Article  CAS  Google Scholar 

  11. Laube, B., Hirai, H., Sturgess, M., Betz, H. & Kuhse, J. Molecular determinants of agonist discrimination by NMDA receptor subunits: analysis of the glutamate binding site on the NR2B subunit. Neuron 18, 493–503 (1997).

    Article  CAS  Google Scholar 

  12. Armstrong, N., Sun, Y., Chen, G.Q. & Gouaux, E. Structure of a glutamate-receptor ligand-binding core in complex with kainate. Nature 395, 913–917 (1998).

    Article  CAS  Google Scholar 

  13. Armstrong, N. & Gouaux, E. Mechanisms for activation and antagonism of an AMPA-sensitive glutamate receptor: crystal structures of the GluR2 ligand binding core. Neuron 28, 165–181 (2000).

    Article  CAS  Google Scholar 

  14. Kuryatov, A., Laube, B., Betz, H. & Kuhse, J. Mutational analysis of the glycine-binding site of the NMDA receptor: structural similarity with bacterial amino acid-binding proteins. Neuron 12, 1291–1300 (1994).

    Article  CAS  Google Scholar 

  15. Hirai, H., Kirsch, J., Laube, B., Betz, H. & Kuhse, J. The glycine binding site of the N-methyl-D-aspartate receptor subunit NR1: identification of novel determinants of co-agonist potentiation in the extracellular M3-M4 loop region. Proc. Natl. Acad. Sci. USA 93, 6031–6036 (1996).

    Article  CAS  Google Scholar 

  16. Paas, Y., Devillers-Thiery, A., Teichberg, V.I., Changeux, J.P. & Eisenstein, M. How well can molecular modelling predict the crystal structure: the case of the ligand-binding domain of glutamate receptors. Trends Pharmacol. Sci. 21, 87–92 (2000).

    Article  CAS  Google Scholar 

  17. Kang, C.H. et al. Crystal structure of the lysine-, arginine-, ornithine-binding protein (LAO) from Salmonella typhimurium at 2.7-A resolution. J. Biol. Chem. 266, 23893–23899 (1991).

    CAS  PubMed  Google Scholar 

  18. Hsiao, C.D., Sun, Y.J., Rose, J. & Wang, B.C. The crystal structure of glutamine-binding protein from Escherichia coli. J. Mol. Biol. 262, 225–242 (1996).

    Article  CAS  Google Scholar 

  19. Oh, B.H. et al. Three-dimensional structures of the periplasmic lysine/arginine/ornithine-binding protein with and without a ligand. J. Biol. Chem. 268, 11348–11355 (1993).

    CAS  PubMed  Google Scholar 

  20. Kawamoto, S. et al. Arginine-481 mutation abolishes ligand-binding of the AMPA-selective glutamate receptor channel alpha1-subunit. Brain Res. Mol. Brain Res. 47, 339–344 (1997).

    Article  CAS  Google Scholar 

  21. Zuo, J. et al. Neurodegeneration in Lurcher mice caused by mutation in δ2 glutamate receptor gene. Nature 388, 769–773 (1997).

    Article  CAS  Google Scholar 

  22. Kohda, K., Wang, Y. & Yuzaki, M. Mutation of a glutamate receptor motif reveals its role in gating and delta2 receptor channel properties. Nat. Neurosci. 3, 315–322 (2000).

    Article  CAS  Google Scholar 

  23. Hirai, H. Ca2+-dependent regulation of synaptic delta2 glutamate receptor density in cultured rat Purkinje neurons. Eur. J. Neurosci. 14, 73–82 (2001).

    Article  CAS  Google Scholar 

  24. Matsuda, S., Launey, T., Mikawa, S. & Hirai, H. Disruption of AMPA receptor GluR2 clusters following long-term depression induction in cerebellar Purkinje neurons. EMBO J. 19, 2765–2774 (2000).

    Article  CAS  Google Scholar 

  25. Atluri, P.P. & Regehr, W.G. Determinants of the time course of facilitation at the granule cell to Purkinje cell synapse. J. Neurosci. 16, 5661–5671 (1996).

    Article  CAS  Google Scholar 

  26. Murashima, M. & Hirano, T. Entire course and distinct phases of day-lasting depression of miniature EPSC amplitudes in cultured Purkinje neurons. J. Neurosci. 19, 7326–7333 (1999).

    Article  CAS  Google Scholar 

  27. Ito, M. Long-term depression. Annu. Rev. Neurosci. 12, 85–102 (1989).

    Article  CAS  Google Scholar 

  28. Linden, D.J. The expression of cerebellar LTD in culture is not associated with changes in AMPA-receptor kinetics, agonist affinity, or unitary conductance. Proc. Natl. Acad. Sci. USA 98, 14066–14071 (2001).

    Article  CAS  Google Scholar 

  29. Wang, Y.T. & Linden, D.J. Expression of cerebellar long-term depression requires postsynaptic clathrin-mediated endocytosis. Neuron 25, 635–647 (2000).

    Article  CAS  Google Scholar 

  30. Hansen, S.H., Sandvig, K. & van Deurs, B. Clathrin and HA2 adaptors: effects of potassium depletion, hypertonic medium, and cytosol acidification. J. Cell. Biol. 121, 61–72 (1993).

    Article  CAS  Google Scholar 

  31. Sillevis Smitt, P. et al. Paraneoplastic cerebellar ataxia due to autoantibodies against a glutamate receptor. N. Engl. J. Med. 342, 21–27 (2000).

    Article  CAS  Google Scholar 

  32. Shigemoto, R., Abe, T., Nomura, S., Nakanishi, S. & Hirano, T. Antibodies inactivating mGluR1 metabotropic glutamate receptor block long-term depression in cultured Purkinje cells. Neuron 12, 1245–1255 (1994).

    Article  CAS  Google Scholar 

  33. Hirano, T., Kasono, K., Araki, K. & Mishina, M. Suppression of LTD in cultured Purkinje cells deficient in the glutamate receptor delta 2 subunit. Neuroreport 6, 524–526 (1995).

    Article  CAS  Google Scholar 

  34. Aiba, A. et al. Deficient cerebellar long-term depression and impaired motor learning in mGluR1 mutant mice. Cell 79, 377–388 (1994).

    Article  CAS  Google Scholar 

  35. Goossens, J. et al. Expression of protein kinase C inhibitor blocks cerebellar long-term depression without affecting Purkinje cell excitability in alert mice. J. Neurosci. 21, 5813–5823 (2001).

    Article  CAS  Google Scholar 

  36. Chen, C. & Tonegawa, S. Molecular genetic analysis of synaptic plasticity, activity-dependent neural development, learning, and memory in the mammalian brain. Annu. Rev. Neurosci. 20, 157–184 (1997).

    Article  CAS  Google Scholar 

  37. Ito, M. The Cerebellum and Neural Control (Raven Press, New York, 1984).

    Google Scholar 

  38. Furuya, S., Makino, A. & Hirabayashi, Y. An improved method for culturing cerebellar Purkinje cells with differentiated dendrites under a mixed monolayer setting. Brain Res. Brain Res. Protoc. 3, 192–198 (1998).

    Article  CAS  Google Scholar 

  39. Larkum, M.E., Launey, T., Dityatev, A. & Luscher, H.R. Integration of excitatory postsynaptic potentials in dendrites of motoneurons of rat spinal cord slice cultures. J. Neurophysiol. 80, 924–935 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Mishina for the GluRδ2−/− mice, I. Tarnawa for GYKI53655, J. Boulter for the GluRδ2 cDNAs, M. Ito for encouragement and T. Curran for critically reading the manuscript. This work was supported in part by the Uehara Memorial Foundation (H.H.), US National Institutes of Health grant NS36925, Cancer Center Support Grant CA 21765 and the American Lebanese Syrian Associated Charities (M.Y.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hirokazu Hirai.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Video 1.

Mice injected with a control antibody targeted to the non-S1 N-terminal region of GluR2 showed normal motor coordination 1 h after treatment. (MPG 1328 kb)

Supplementary Video 2.

Mice injected with anti-δH2 showed motor discoordination 1 h after treatment. (MPG 919 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hirai, H., Launey, T., Mikawa, S. et al. New role of δ2-glutamate receptors in AMPA receptor trafficking and cerebellar function. Nat Neurosci 6, 869–876 (2003). https://doi.org/10.1038/nn1086

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1086

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing