Modularity of music processing


The music faculty is not a monolithic entity that a person either has or does not. Rather, it comprises a set of neurally isolable processing components, each having the potential to be specialized for music. Here we propose a functional architecture for music processing that captures the typical properties of modular organization. The model rests essentially on the analysis of music-related deficits in neurologically impaired individuals, but provides useful guidelines for exploring the music faculty in normal people, using methods such as neuroimaging.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: A modular model of music processing.

Ivelisse Robles


  1. 1

    Handel, S. Listening: an Introduction to the Perception of Auditory Events (MIT press, Cambridge, Massachusetts, 1989).

    Google Scholar 

  2. 2

    Bregman, A. Auditory Scene Analysis. The Perceptual Organization of Sound. (MIT press, London, 1990).

    Google Scholar 

  3. 3

    Zatorre, R. & Peretz, I. (eds.) The Biological Foundations of Music (NY Acad. Sci., New York, 2001).

    Google Scholar 

  4. 4

    Fodor, J. The Modularity of Mind (MIT press, Cambridge, Massachusetts, 1983).

    Google Scholar 

  5. 5

    Fodor, J. The Mind Doesn't Work That Way (MIT press, Cambridge, Massachusetts, 2001).

    Google Scholar 

  6. 6

    Coltheart, M. Modularity and cognition. Trends Cogn. Sci. 3, 115–120 (1999).

    CAS  Article  Google Scholar 

  7. 7

    Gardner, H. Musical intelligence. in Frames of Mind (ed. Gardner, H.) 31–58 (Basic Books, New York, 1983).

    Google Scholar 

  8. 8

    Jackendoff, R. Consciousness and the Computational Mind (MIT Press, Cambridge, Massachusetts, 1987).

    Google Scholar 

  9. 9

    Peretz, I. & Morais, J. Music and modularity. Contemporary Music Rev. 4, 277–291 (1989).

    Article  Google Scholar 

  10. 10

    Peretz, I. et al. Functional dissociations following bilateral lesions of auditory cortex. Brain 117, 1283–1302 (1994).

    Article  Google Scholar 

  11. 11

    Peretz, I., Belleville, S. & Fontaine, S. Dissociations entre musique et langage après atteinte cérébrale: un nouveau cas d'amusie sans aphasie. Can. J. Exp. Psychol. 51, 354–368 (1997).

    CAS  Article  Google Scholar 

  12. 12

    Griffiths, T.D. et al. Spatial and temporal auditory processing deficits following right hemisphere infarction: a psychophysical study. Brain 120, 785–794 (1997).

    Article  Google Scholar 

  13. 13

    Wilson, S.J. & Pressing, J. Neuropsychological assessment and the modeling of musical deficits. in Music Medicine and Music Therapy: Expanding Horizons (eds. Pratt, R.R. & Erdonmez Grocke, D.) 47–74 (Univ. Melbourne Press, Melbourne, 1999).

    Google Scholar 

  14. 14

    Piccirilli, M., Sciarma, T. & Luzzi, S. Modularity of music: evidence from a case of pure amusia. J. Neurol. Neurosurg. Psychiatry 69, 541–545 (2000).

    CAS  Article  Google Scholar 

  15. 15

    Steinke, W.R., Cuddy, L.L. & Jakobson, L.S. Dissociations among functional subsystems governing melody recognition after right-hemisphere damage. Cognit. Neuropsychol. 18, 411–437 (2001).

    CAS  Article  Google Scholar 

  16. 16

    Peretz, I. et al. Congenital amusia: a disorder of fine-grained pitch discrimination. Neuron 33, 185–191 (2002).

    CAS  Article  Google Scholar 

  17. 17

    Ayotte, J., Peretz, I. & Hyde, K. Congenital amusia: A group study of adults afflicted with a music-specific disorder. Brain 125, 238–251 (2002).

    Article  Google Scholar 

  18. 18

    Laignel-Lavastine, M. & Alajouanine, T. Un cas d'agnosie auditive. Société de Neurologie 37, 194–198 (1921).

    Google Scholar 

  19. 19

    Godefroy, O. et al. Psychoacoustical deficits related to bilateral subcortical hemorrhages. A case with apperceptive auditory agnosia. Cortex 31, 149–159 (1995).

    CAS  Article  Google Scholar 

  20. 20

    Mendez, M. Generalized auditory agnosia with spared music recognition in a left-hander. Analysis of a case with a right temporal stroke. Cortex 37, 139–150 (2001).

    CAS  Article  Google Scholar 

  21. 21

    Metz-Lutz, M.N. & Dahl, E. Analysis of word comprehension in a case of pure word deafness. Brain Lang. 23, 13–25 (1984).

    CAS  Article  Google Scholar 

  22. 22

    Takahashi, N. et al. Pure word deafness due to left hemisphere damage. Cortex 28, 295–303 (1992).

    CAS  Article  Google Scholar 

  23. 23

    Yaqub, B.A., Gascon, G.G., Al-Nosha, M. & Whitaker, H. Pure word deafness (acquired verbal auditory agnosia) in an Arabic speaking patient. Brain 111, 457–466 (1988).

    Article  Google Scholar 

  24. 24

    Peretz, I. Music perception and recognition. in The Handbook of Cognitive Neuropsychology (ed. Rapp, B.) 519–540 (Psychology Press, Hove, UK, 2001).

    Google Scholar 

  25. 25

    Krumhansl, C.L. Cognitive Foundations of Musical Pitch (Oxford Univ. Press, New York, 1990).

    Google Scholar 

  26. 26

    Shepard, R. & Jordan, D. Auditory illusions demonstrating that tones are assimilated to an internalized musical scale. Science 226 1333–1334 (1984).

    CAS  Article  Google Scholar 

  27. 27

    Tillmann, B., Bharucha, J.J. & Bigand, E. Implicit learning of tonality: a self-organizing approach. Psychol. Rev. 107, 885–913 (2000).

    CAS  Article  Google Scholar 

  28. 28

    Dowling, W.J. Melodic information processing and its development. in The Psychology of Music (ed. Deutsch, D.) 413–430 (Academic, New York, 1982).

    Google Scholar 

  29. 29

    Balzano, G. The pitch set as a level of description for studying musical pitch perception. in Music, Mind and Brain (ed. Clynes, M.) 321–351 (Plenum, New York, 1982).

    Google Scholar 

  30. 30

    Trehub, S.E., Schellenberg, E.G. & Kamenetsky, S.B. Infants' and adults' perception of scale structure. J. Exp. PsychoL. Hum. Percept. Perform. 25, 965–975 (1999).

    CAS  Article  Google Scholar 

  31. 31

    Trehub, S.E. The developmental origins of musicality. Nat. Neurosci. 6, 669–673 (2003).

    CAS  Article  Google Scholar 

  32. 32

    Peretz, I. Auditory atonalia for melodies. Cognit. Neuropsychol. 10, 21–56 (1993).

    Article  Google Scholar 

  33. 33

    Janata, P. et al. The cortical topography of tonal structures underlying Western music. Science 298, 2167–2170 (2002).

    CAS  Article  Google Scholar 

  34. 34

    Patel, A. Language, music and the brain. Nat. Neurosci. 6, 674–681 (2003).

    CAS  Article  Google Scholar 

  35. 35

    Coltheart, M. Assumptions and methods in cognitive neuropsychology. in The Handbook of Cognitive Neuropsychology (ed. Rapp, B.) 3–21 (Psychology Press, Hove, UK, 2001).

    Google Scholar 

  36. 36

    Janata, P. & Grafton, S. Swinging in the brain: shared neural substrates for behaviors related to sequencing and music. Nat. Neurosci. 6, 682–687 (2003).

    CAS  Article  Google Scholar 

  37. 37

    Peretz, I. Listen to the brain: the biological perspective on musical emotions. in Music and Emotion: Theory and Research (eds. Juslin, P. & Sloboda, J.) 105–134 (Oxford Univ. Press, 2001).

    Google Scholar 

  38. 38

    Hébert, S., Racette, A., Gagnon, L. & Peretz, I. Revisiting the dissociation between singing and speaking in expressive aphasia. Brain (in press).

  39. 39

    Dalla Bella, S. & Peretz, I. Congenital amusia interferes with the ability to synchronize with music. Ann. NY Acad. Sci. (in press).

Download references


Based on research supported by grants from the Natural Sciences and Engineering Research Council of Canada and the Canadian Institutes of Health Research to I.P. We thank C. Palmer and T. Griffiths for insightful comments made on an earlier draft.

Author information



Corresponding author

Correspondence to Isabelle Peretz.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Peretz, I., Coltheart, M. Modularity of music processing. Nat Neurosci 6, 688–691 (2003).

Download citation

Further reading


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing