Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Language, music, syntax and the brain

Abstract

The comparative study of music and language is drawing an increasing amount of research interest. Like language, music is a human universal involving perceptually discrete elements organized into hierarchically structured sequences. Music and language can thus serve as foils for each other in the study of brain mechanisms underlying complex sound processing, and comparative research can provide novel insights into the functional and neural architecture of both domains. This review focuses on syntax, using recent neuroimaging data and cognitive theory to propose a specific point of convergence between syntactic processing in language and music. This leads to testable predictions, including the prediction that that syntactic comprehension problems in Broca's aphasia are not selective to language but influence music perception as well.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Hierarchical structures in language and music.

Ivelisse Robles

Figure 2: Neural evidence for syntactic overlap in language and music.
Figure 3: How Dependency Locality Theory (DLT)36 measures distances between words.

Kamal Masuta

Figure 4: The geometry of musical pitch space.

Kamal Masuta

References

  1. Brown, C. & Hagoort, P. (eds.) The Neurocognition of Language (Oxford Univ. Press, Oxford, 1999).

    Google Scholar 

  2. Peretz, I. & Zatorre, R. (eds.) The Cognitive Neuroscience of Music (Oxford Univ. Press, Oxford, 2003).

    Google Scholar 

  3. Lerdahl, F. & Jackendoff, R. A Generative Theory of Tonal Music (MIT Press, Cambridge, Massachusetts, 1983).

    Google Scholar 

  4. Peretz, I. & Coltheart, M. Modularity of music processing. Nat. Neurosci. 6, 688–691 (2003).

    CAS  PubMed  Google Scholar 

  5. Tervaniemi, M. et al. Functional specialization of the human auditory cortex in processing phonetic and musical sounds: A magnetoencephalographic (MEG) study. Neuroimage 9, 330–336 (1999).

    CAS  PubMed  Google Scholar 

  6. Patel, A.D., Peretz, I., Tramo, M. & Labrecque, R. Processing prosodic and musical patterns: a neuropsychological investigation. Brain Lang. 61, 123–144 (1998).

    CAS  PubMed  Google Scholar 

  7. Patel, A.D., Gibson, E., Ratner, J., Besson, M., & Holcomb, P.J. Processing syntactic relations in language and music: An event-related potential study. J. Cogn. Neurosci. 10, 717–733 (1998).

    CAS  PubMed  Google Scholar 

  8. Maess, B., Koelsch, S., Gunter, T. & Friederici, A.D. Musical syntax is processed in Broca's area: an MEG study. Nat. Neurosci. 4, 540–545 (2001).

    CAS  PubMed  Google Scholar 

  9. Tillmann, B., Janata, P. & Bharucha, J.J. Activation of the inferior frontal cortex in musical priming. Cogn. Brain Res. 16, 145–161 (2003).

    Google Scholar 

  10. Koelsch, S. et al. Bach speaks: a cortical “language-network” serves the processing of music. Neuroimage 17, 956–966 (2002).

    PubMed  Google Scholar 

  11. Luria, A., Tsvetkova, L., & Futer, J. Aphasia in a composer. J. Neurol. Sci. 2, 288–292 (1965).

    CAS  PubMed  Google Scholar 

  12. Peretz, I. Auditory atonalia for melodies. Cognit. Neuropsychol. 10, 21–56 (1993).

    Google Scholar 

  13. Peretz, I. et al. Functional dissociations following bilateral lesions of auditory cortex. Brain 117, 1283–1302 (1994).

    PubMed  Google Scholar 

  14. Griffiths, T.D. et al. Spatial and temporal auditory processing deficits following right hemisphere infarction. Brain 120, 785–794 (1997).

    PubMed  Google Scholar 

  15. Ayotte, J., Peretz, I., Rousseau, I., Bard, C., & Bojanowski, M. Patterns of music agnosia associated with middle cerebral artery infarcts. Brain 123, 1926–1938 (2000).

    PubMed  Google Scholar 

  16. Ayotte, J., Peretz, I. & Hyde, K. Congenital amusia: a group study of adults afflicted with a music-specific disorder. Brain 125, 238–251 (2002).

    PubMed  Google Scholar 

  17. Nettl, B. An ethnomusicologist contemplates universals in musical sound and musical culture. in The Origins of Music (eds. Wallin, N., Merker, J. & Brown, S.) 463–472 (MIT Press, Cambridge, Massachusetts, 2000).

    Google Scholar 

  18. Patel, A.D. & Daniele, J.R. An empirical comparison of rhythm in language and music. Cognition 87, B35–B45 (2003).

    PubMed  Google Scholar 

  19. Deutsch, D. (ed.) The Psychology of Music 2nd edn. (Academic, San Diego, California, 1999).

    Google Scholar 

  20. Jackendoff, R. Foundations of Language (Oxford Univ. Press, New York, 2002).

    Google Scholar 

  21. Sloboda, J.A. The Musical Mind (Oxford Univ. Press, Oxford, 1985).

    Google Scholar 

  22. Gibson, E. & Perlmutter, N.J. Constraints on sentence comprehension. Trends Cogn. Sci. 2, 262–268 (1998).

    CAS  PubMed  Google Scholar 

  23. Swain, J.P. Musical Languages (W.W. Norton, New York, 1997).

    Google Scholar 

  24. Fodor, J.A. Modularity of Mind (MIT Press, Cambridge, Massachusetts, 1983).

    Google Scholar 

  25. Elman, J.L. et al. Rethinking Innateness: A Connectionist Perspective on Development (MIT Press, Cambridge, Massachusetts, 1996).

    Google Scholar 

  26. Osterhout, L. & Holcomb, P.J. Event-related potentials elicited by syntactic anomaly. J. Mem. Lang. 31, 785–806 (1992).

    Google Scholar 

  27. Frisch, S., Kotz, S.A., Yves von Cramon, D., & Friederici, A.D. Why the P600 is not just a P300: the role of the basal ganglia. Clin. Neurophysiol. 114, 336–340 (2003).

    PubMed  Google Scholar 

  28. Koelsch, S., Gunter, T., Friederici, A.D. & Schröger, E. Brain indices of music processing: 'non-musicians' are musical. J. Cogn. Neurosci. 12, 520–541 (2000).

    CAS  PubMed  Google Scholar 

  29. Koelsch, S. et al. Differentiating ERAN and MMN: an ERP-study. Neuroreport 12, 1385–1390 (2001).

    CAS  PubMed  Google Scholar 

  30. Chomsky, N. Aspects of the Theory of Syntax (MIT Press, Cambridge, Massachusetts, 1965).

    Google Scholar 

  31. Levelt, W.J.M. Models of word production. Trends Cogn. Sci. 3, 223–232 (1999).

    CAS  PubMed  Google Scholar 

  32. Caplan, D. & Waters, G.S. Verbal working memory and sentence comprehension. Behav. Brain Sci. 22, 77–94 (1999).

    CAS  PubMed  Google Scholar 

  33. Ullman, M.T. A neurocognitive perspective on language: the declarative/procedural model. Nat. Rev. Neurosci. 2, 717–726 (2001).

    CAS  PubMed  Google Scholar 

  34. Phillips, C. Order and Structure (PhD Thesis, MIT, 1996).

    Google Scholar 

  35. MacDonald, M.C. & Christiansen, M.H. Reassessing working memory: comment on Just and Carpenter (1992) and Waters and Caplan (1996). Psychol. Rev. 109, 35–54 (2002).

    PubMed  Google Scholar 

  36. Gibson, E. Linguistic complexity: locality of syntactic dependencies. Cognition 68, 1–76 (1998).

    CAS  PubMed  Google Scholar 

  37. Gibson, E. The dependency locality theory: a distance-based theory of linguistic complexity. in Image, Language, Brain (eds. Miyashita, Y., Marantaz, A., & O'Neil, W.) 95–126 (MIT Press, Cambridge, Massachusetts, 2000).

    Google Scholar 

  38. Babyonyshev, M. & Gibson, E. The complexity of nested structures in Japanese. Language 75, 423–450 (1999).

    Google Scholar 

  39. Lerdahl, F. Tonal Pitch Space (Oxford, Oxford Univ. Press, 2001).

    Google Scholar 

  40. Krumhansl, C.L. Cognitive Foundations of Musical Pitch (Oxford Univ. Press, New York, 1990).

    Google Scholar 

  41. Krumhansl, C.L. A perceptual analysis of Mozart's piano sonata K. 282: segmentation, tension, and musical ideas. Music Percept. 13, 401–432 (1996).

    Google Scholar 

  42. Bigand, E., & Parncutt, R. Perceiving musical tension in long chord sequences. Psychol. Res. 62, 237–254 (1999).

    CAS  PubMed  Google Scholar 

  43. Bigand, E. Traveling through Lerdahl's tonal pitch space theory: a psychological perspective. Musicae Scientiae 7, 121–140 (2003).

    Google Scholar 

  44. Lerdahl, F. & Krumhansl, C.L. The theory of tonal tension and its implications for musical research. in Los últimos diez años en la investigación musical (eds. Martín Galán, J. & Villar-Taboada, C.) (Valladolid: Servicio de Publicaciones de la Universidad de Valladolid, in press).

  45. Smith, N. & Cuddy, L.L. Musical dimensions in Beethoven's Waldstein Sonata: An Application of Tonal Pitch Space Theory. Musicae Scientiae (in press).

  46. Vega, D. A perceptual experiment on harmonic tension and melodic attraction in Lerdahls' Tonal Pitch Space. Musicae Scientiae 7, 35–55 (2003).

    Google Scholar 

  47. Warren, T. & Gibson, E. The influence of referential processing on sentence complexity. Cognition 85, 79–112 (2002).

    PubMed  Google Scholar 

  48. Tillmann, B., Bharucha, J.J. & Bigand, E. Implicit learning of tonality: a self-organizing approach. Psychol. Rev. 107, 885–913 (2000).

    CAS  PubMed  Google Scholar 

  49. Kaan, E. & Swaab, T.Y. The brain circuitry of syntactic comprehension. Trends Cogn. Sci. 6, 350–356 (2002).

    PubMed  Google Scholar 

  50. Haarmann, H.J. & Kolk, H.H.J. Syntactic priming in Broca's aphasics: evidence for slow activation. Aphasiology 5, 247–263 (1991).

    Google Scholar 

  51. Price, C.J. & Friston, K.J. Cognitive conjunction: a new approach to brain activation experiments. Neuroimage 5, 261–270 (1997).

    CAS  PubMed  Google Scholar 

  52. Kaan, E., Harris, T., Gibson, T. & Holcomb, P.J. The P600 as an index of syntactic integration difficulty. Lang. Cogn. Proc. 15, 159–201 (2000).

    Google Scholar 

  53. Marin, O.S.M. & Perry, D.W. Neurologocal aspects of music perception and performance. in The Psychology of Music 2nd edn. (ed. Deutsch, D.) 653–724 (Academic, San Diego, 1999).

    Google Scholar 

  54. Françès, R., Lhermitte, F. & Verdy, M. Le déficit musical des aphasiques. Revue Internationale de Psychologie Appliquée 22, 117–135 (1973).

    Google Scholar 

  55. Bigand, E., Tillmann, B., Poulin, B., D'Adamo, D. & Madurell, F. The effect of harmonic context on phoneme monitoring in vocal music. Cognition 81, B11–20 (2001).

    CAS  PubMed  Google Scholar 

  56. Bonnel, A.-M., Faïta, F., Peretz, I. & Besson, M. Divided attention between lyrics and tunes of operatic songs: evidence for independent processing. Percept. Psychophys. 63, 1201–1213 (2001).

    CAS  PubMed  Google Scholar 

  57. Saffran, J.R., Aslin, R.N. & Newport, E.L. Statistical learning by 8-month old infants. Science 274, 1926–1928 (1996).

    CAS  PubMed  Google Scholar 

  58. Saffran, J.R., Johnson, E.K., Aslin, R.N., & Newport, E.L. Statistical learning of tone sequences by human infants and adults. Cognition 70, 27–52 (1999).

    CAS  PubMed  Google Scholar 

  59. Trehub, S.E., Trainor, L.J., & Unyk, A.M. Music and speech processing in the first year of life. Adv. Child Dev. Behav. 24, 1–35 (1993).

    CAS  PubMed  Google Scholar 

  60. Pantev, C., Roberts, L.E., Schulz, M., Engelien, A. & Ross B. Timbre-specific enhancement of auditory cortical representations in musicians. Neuroreport 12, 169–174 (2001).

    CAS  PubMed  Google Scholar 

  61. Menning, H., Imaizumi, S., Zwitserlood, P. & Pantev, C. Plasticity of the human auditory cortex induced by discrimination learning of non-native, mora-timed contrasts of the Japanese language. Learn. Mem. 9, 253–267 (2002).

    PubMed  PubMed Central  Google Scholar 

  62. Zatorre, R., Evans, A.C., Meyer, E., & Gjedde, A. Lateralization of phonetic and pitch discrimination in speech processing. Science 256, 846–849 (1992).

    CAS  PubMed  Google Scholar 

  63. Gandour, J. et al. A crosslinguistic PET study of tone perception. J. Cogn. Neurosci. 12, 207–222 (2000).

    CAS  PubMed  Google Scholar 

  64. Schön, D., Magne, C. & Besson, M. The music of speech: electrophysiological study of pitch perception in language and music. Psychophysiology (in press).

  65. Hickok, G. & Poeppel, D. Towards a functional neuroanatomy of speech perception. Trends Cogn. Sci. 4, 131–138 (2000).

    CAS  PubMed  Google Scholar 

  66. Zatorre, R.J., Belin, P. & Penhune, V.B. Structure and function of auditory cortex: music and speech. Trends Cogn. Sci. 6, 37–46 (2002).

    PubMed  Google Scholar 

  67. Wallace, W. Memory for music: Effect of melody on recall of text. J. Exp. Psychol. Learn. Mem. Cogn. 20, 1471–1485 (1994).

    Google Scholar 

  68. Besson, M., Faïta, F., Peretz, I., Bonnel, A.-M. & Requin, J. Singing in the brain: independence of lyrics and tunes. Psychol. Sci. 9, 494–498 (1998).

    Google Scholar 

  69. Hébert, S. & Peretz, I. Are text and tune of familiar songs separable by brain damage? Brain Cogn. 46, 169–175 (2001).

    PubMed  Google Scholar 

  70. Jakobson, L.S., Cuddy, L.L. & Kilgour, R. Time tagging: a key to musicians' superior memory. Music Percept. 20, 307–313 (2003).

    Google Scholar 

  71. Kolk, H.H. & Friederici, A.D. Strategy and impairment in sentence understanding by Broca's and Wernicke's aphasics. Cortex 21, 47–67 (1985).

    CAS  PubMed  Google Scholar 

  72. Swaab, T.Y. et al. Understanding ambiguous words in sentence contexts: electrophysiological evidence for delayed contextual selection in Broca's aphasia. Neuropsychologia 36, 737–761 (1998).

    CAS  PubMed  Google Scholar 

  73. Bharucha, J.J. & Stoeckig, K. Reaction time and musical expectancy. J. Exp. Psychol. Hum. Percept. Perform. 12, 403–410 (1986).

    CAS  PubMed  Google Scholar 

  74. Bigand, E. & Pineau, M. Global context effects on musical expectancy. Percept. Psychophys. 59, 1098–1107 (1997).

    CAS  PubMed  Google Scholar 

  75. Tillmann, B., Bigand, E. & Pineau, M. Effect of local and global contexts on harmonic expectancy. Music Percept. 16, 99–118 (1998).

    Google Scholar 

  76. Bigand, E., Madurell, F., Tillmann, B. & Pineau, M. Effect of global structure and temporal organization on chord processing. J. Exp. Psychol. Hum. Percept. Perform. 25, 184–197 (1999).

    Google Scholar 

  77. Tillmann, B. & Bigand, E. Global context effects in normal and scrambled musical sequences. J. Exp. Psychol. Hum. Percept. Perform. 27, 1185–1196 (2001).

    CAS  PubMed  Google Scholar 

  78. Justus, T.C. & Bharucha, J.J. Modularity in musical processing: the automaticity of harmonic priming J. Exp. Psychol. Hum. Percept. Perform. 27, 1000–1011 (2001).

    CAS  PubMed  Google Scholar 

  79. Bharucha, J.J. & Stoeckig, K. Priming of chords: spreading activation or overlapping frequency spectra? Percept. Psychophys. 41, 519–524 (1987).

    CAS  PubMed  Google Scholar 

  80. Tekman, H.G. & Bharucha, J.J. Implicit knowledge versus psychoacoustic similarity in priming of chords. J. Exp. Psychol. Hum. Percept. Perform. 24, 252–260 (1998).

    Google Scholar 

  81. Bigand, E., Poulin, B., Tillman, B., Madurell, F. & D'Adamo, D.A. Sensory versus cognitive components in harmonic priming. J. Exp. Psychol. Hum. Percept. Perform. 29, 159–171 (2003).

    PubMed  Google Scholar 

  82. Haarmann, J.J. & Kolk, H.H.J. A computer model of the temporal course of agrammatic sentence understanding: the effects of variation in severity and sentence complexity. Cognit. Sci. 15, 49–87 (1991).

    Google Scholar 

  83. Blumstein, S.E., Milberg, W.P., Dworetzky, B., Rosen, A. & Gershberg, F. Syntactic priming effects in aphasia: an investigation of local syntactic dependencies. Brain Lang. 40, 393–421 (1991).

    CAS  PubMed  Google Scholar 

  84. McNellis, M.G. & Blumstein, S.E. Self-organizing dynamics of lexical access in normals and aphasics. J. Cogn. Neurosci. 13, 151–170 (2001).

    CAS  PubMed  Google Scholar 

  85. Blumstein, S.E. & Milberg, W. Language deficits in Broca's and Wernicke's aphasia: a singular impairment. in Language and the Brain: Representation and Processing. (eds. Grodzinsky, Y., Shapiro, L. & Swinney, D) 167–184 (Academic, New York, 2000).

    Google Scholar 

  86. Hsaio, F., & Gibson, E. Processing relative clauses in Chinese. Cognition (in press).

  87. Krumhansl, C.L. The psychological representation of musical pitch in a tonal context. Cognit. Psychol. 11, 346–384 (1979).

    Google Scholar 

  88. Krumhansl, C.L., Bharucha, J.J. & Kessler, E.J. Perceived harmonic structure of chords in three related musical keys. J. Exp. Psychol. Hum. Percept. Perform. 8, 24–36 (1982).

    CAS  PubMed  Google Scholar 

  89. Krumhansl, C.L. & Kessler, E.J. Tracing the dynamic changes in perceived tonal organization in a spatial map of musical keys. Psychol. Rev. 89, 334–368 (1982).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Neurosciences Research Foundation as part of its program on music and the brain at The Neurosciences Institute, where A.D.P. is the Esther J. Burnham fellow. I thank E. Bates, S. Brown, J. Burton, J. Elman, T. Gibson, T. Griffiths, P. Hagoort, T. Justus, C. Krumhansl, F. Lerdahl, J. McDermott and B. Tillmann.

Author information

Authors and Affiliations

Authors

Supplementary information

Supplementary Audio 1.

 The syntax of harmonic structure in music A very important aspect of Western European tonal music (from approximately 1600 to 1900) is its harmonic structure, a system of norms involving the organization of tones, chords, and keys. For example, basic chords (simultaneous soundings of tones) are built from three pitches separated by musical thirds (e.g. "triads" such as C-E-G or D-F-A), with further principles for modifying triads with additional tones. Chord formation thus forms one level of syntactic patterning, concerned with the "vertical" organization of tones. Another level concerns the "horizontal" (sequential) patterning of tones and chords, which plays a vital role in defining keys or coherent tonal regions. (For those unfamiliar with the concept of a musical key, a brief description is given in the section of the paper titled "Syntactic processing in music: Tonal Pitch Space Theory"). For the purposes of this article, the essential point is that many of the norms of tonal syntax are implicitly learned by listeners who grow up listening to this music or to music based on similar conventions (a good deal of popular music of the past 100 years has been strongly influenced by these conventions) [cf. ref. 40 in the paper]. A brief illustration of sequential tonal syntax is provided by the following two sound examples from a recent study by Tillmann et al. [Tillmann, B., Janata, P., Birk, J., & Bharucha, JJ. The costs and benefits of tonal centers for chord processing. Journal of Experimental Psychology: Human Perception and Performance 29, 470-482 (2003)]. This example illustrates a conventional chord progression in the style of J.S. Bach. For an example of music in which each individual chord is harmonically well-formed, but the sequence is syntactically odd because chords from different keys are combined, see Supplementary Audio 2. Like the study of linguistic syntax, the study of harmony has a large theoretical literature. For an introduction aimed at beginners, see Kostka, S. & Payne, D. Tonal Harmony, with an Introduction to Twentieth Century Music, 4th ed. (McGraw Hill, New York, 2000). (WAV 592 kb)

Supplementary Audio 2.

 Each individual chord is harmonically well-formed, but the sequence is syntactically odd because chords from different keys are combined (see legend for Supplementary Audio 1 for further explanation). (WAV 513 kb)

Supplementary Audio 3.

 Sour notes in music A "sour note" is a note which sounds odd because it violates musical key structure, i.e. it does not belong to the scale of the current musical key. It is not physically deviant in any way, and can sound perfectly normal in another context. The "sourness" of a sour note depends on enculturation in a particular musical tradition, and reflects implicit knowledge of tonal norms [cf. Janata, P., Birk, J.L., Tillmann, B., & Bharucha, J.J. Online detection of tonal pop-out in modulating contexts. Music Perception 20, 283-305 (2003)]. Sour notes in Western European tonal music are easily detected by people who have grown up with this music, both musicians and nonmusicians alike. In fact, the inability to detect sour notes is diagnostic of "congenital amusia" [cf. ref. 16 in the paper]. The following melody contains a sour note about 2/3 of the way through the sample. This melody is from the Essen folksong database (www.esac-data.org), where it is indexed as K0016 in the Kinder0 file (the melody does not have the sour note in its original version). For a recent discussion of the cognitive neuroscience of melody, see Patel, A.D. in The Cognitive Neuroscience of Music (eds. Peretz, I. & Zatorre, R.) (Oxford University Press, Oxford, in press). (WAV 2129 kb)

Supplementary Audio 4.

 Christus, der ist mein Leben 1st phrase (J.S. Bach) (WAV 861 kb)

Supplementary Note 1 (PDF 5 kb)

Supplementary Note 2 (PDF 5 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Patel, A. Language, music, syntax and the brain. Nat Neurosci 6, 674–681 (2003). https://doi.org/10.1038/nn1082

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1082

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing