Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Non-invasive mapping of connections between human thalamus and cortex using diffusion imaging

Abstract

Evidence concerning anatomical connectivities in the human brain is sparse and based largely on limited post-mortem observations. Diffusion tensor imaging has previously been used to define large white-matter tracts in the living human brain, but this technique has had limited success in tracing pathways into gray matter. Here we identified specific connections between human thalamus and cortex using a novel probabilistic tractography algorithm with diffusion imaging data. Classification of thalamic gray matter based on cortical connectivity patterns revealed distinct subregions whose locations correspond to nuclei described previously in histological studies. The connections that we found between thalamus and cortex were similar to those reported for non-human primates and were reproducible between individuals. Our results provide the first quantitative demonstration of reliable inference of anatomical connectivity between human gray matter structures using diffusion data and the first connectivity-based segmentation of gray matter.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Tracing connectivity distributions from individual seed voxels.
Figure 2: Connectivity-based segmentation of the thalamus in a single subject.
Figure 3: Connectivity-based segmentation of the thalamus.
Figure 4: Classification of internal capsule white matter based on connections to putative thalamic nuclei.
Figure 5: Probabilistic mapping of cortical connections.
Figure 6: Paths from thalamus to temporal lobe.
Figure 7: Effects of thresholding thalamic clusters based on the probability of connection to cortex.
Figure 8: Comparison of connectivity-based segmentation of the thalamus between eight subjects (results from subject 1 are described in greater detail elsewhere in the manuscript).

References

  1. Passingham, R.E., Stephan, K.E. & Kotter, R. The anatomical basis of functional localization in the cortex. Nat. Rev. Neurosci. 3, 606–616 (2002).

    Article  CAS  Google Scholar 

  2. Barbas, H. & Pandya, D.N. Architecture and frontal cortical connections of the premotor cortex (area 6) in the rhesus monkey. J. Comp. Neurol. 256, 211–228 (1987).

    Article  CAS  Google Scholar 

  3. Van Essen, D.C., Newsome, W.T., Maunsell, J.H. & Bixby, J.L. The projections from striate cortex (V1) to areas V2 and V3 in the macaque monkey: asymmetries, areal boundaries, and patchy connections. J. Comp. Neurol. 244, 451–480 (1986).

    Article  CAS  Google Scholar 

  4. Scannell, J.W., Burns, G.A., Hilgetag, C.C., O'Neil, M.A. & Young, M.P. The connectional organization of the corticothalamic system of the cat. Cereb. Cortex 9, 277–299 (1999).

    Article  CAS  Google Scholar 

  5. Mufson, E.J., Brady, D.R. & Kordower, J.H. Tracing neuronal connections in postmortem human hippocampal complex with the carbocyanine dye DiI. Neurobiol. Aging 11, 649–653 (1990).

    Article  CAS  Google Scholar 

  6. Van Buren, J.M. & Burke, R.C. Variations and Connections of the Human Thalamus. 1. The Nuclei and Cerebral Connections of the Human Thalamus. (Springer-Verlag, New York, 1972).

    Google Scholar 

  7. Jones, E.G. The Thalamus (Plenum Press, New York, 1985).

    Book  Google Scholar 

  8. Guillery, R.W. & Sherman, S.M. Thalamic relay functions and their role in corticocortical communication: generalizations from the visual system. Neuron 33, 163–175 (2002).

    Article  CAS  Google Scholar 

  9. Morel, A., Magnin, M. & Jeanmonod, D. Multiarchitectonic and stereotactic atlas of the human thalamus. J. Comp. Neurol. 387, 588–630 (1997).

    Article  CAS  Google Scholar 

  10. Magnotta, V.A., Gold, S., Andreasen, N.C., Ehrhardt, J.C. & Yuh, W.T. Visualization of subthalamic nuclei with cortex attenuated inversion recovery MR imaging. Neuroimage 11, 341–346 (2000).

    Article  CAS  Google Scholar 

  11. Basser, P.J., Mattiello, J. & LeBihan, D. MR diffusion tensor spectroscopy and imaging. Biophys. J. 66, 259–267 (1994).

    Article  CAS  Google Scholar 

  12. Basser, P.J., Mattiello, J. & LeBihan, D. Estimation of the effective self-diffusion tensor from the NMR spin echo. J. Magn. Reson. B 103, 247–254 (1994).

    Article  CAS  Google Scholar 

  13. Beaulieu, C. & Allen, P.S. Determinants of anisotropic water diffusion in nerves. Magn. Reson. Med. 31, 394–400 (1994).

    Article  CAS  Google Scholar 

  14. Parker, G.J. et al. Initial demonstration of in vivo tracing of axonal projections in the macaque brain and comparison with the human brain using diffusion tensor imaging and fast marching tractography. Neuroimage 15, 797–809 (2002).

    Article  Google Scholar 

  15. Ciccarelli, O. et al. From diffusion tractography to quantitative white matter tract measures: a reproducibility study. Neuroimage 18, 348–359 (2003).

    Article  CAS  Google Scholar 

  16. Mori, S., Crain, B.J., Chacko, V.P. & van Zijl, P.C. Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging. Ann. Neurol. 45, 265–269 (1999).

    Article  CAS  Google Scholar 

  17. Poupon, C. et al. Regularization of diffusion-based direction maps for the tracking of brain white matter fascicles. Neuroimage 12, 184–195 (2000).

    Article  CAS  Google Scholar 

  18. Jones, D.K., Simmons, A., Williams, S.C. & Horsfield, M.A. Non-invasive assessment of axonal fiber connectivity in the human brain via diffusion tensor MRI. Magn. Reson. Med. 42, 37–41 (1999).

    Article  CAS  Google Scholar 

  19. Conturo, T.E. et al. Tracking neuronal fiber pathways in the living human brain. Proc. Natl. Acad. Sci. USA 96, 10422–10427 (1999).

    Article  CAS  Google Scholar 

  20. Basser, P.J., Pajevic, S., Pierpaoli, C., Duda, J. & Aldroubi, A. In vivo fiber tractography using DT-MRI data. Magn. Reson. Med. 44, 625–632 (2000).

    Article  CAS  Google Scholar 

  21. Tanaka, D. Jr. Thalamic projections of the dorsomedial prefrontal cortex in the rhesus monkey (Macaca mulatta). Brain Res. 110, 21–38 (1976).

    Article  Google Scholar 

  22. Tobias, T.J. Afferents to prefrontal cortex from the thalamic mediodorsal nucleus in the rhesus monkey. Brain Res. 83, 191–212 (1975).

    Article  CAS  Google Scholar 

  23. Markowitsch, H.J., Emmans, D., Irle, E., Streicher, M. & Preilowski, B. Cortical and subcortical afferent connections of the primate's temporal pole: a study of rhesus monkeys, squirrel monkeys, and marmosets. J. Comp. Neurol. 242, 425–458 (1985).

    Article  CAS  Google Scholar 

  24. Yarita, H., Iino, M., Tanabe, T., Kogure, S. & Takagi, S.F. A transthalamic olfactory pathway to orbitofrontal cortex in the monkey. J. Neurophysiol. 43, 69–85 (1980).

    Article  CAS  Google Scholar 

  25. Russchen, F.T., Amaral, D.G. & Price, J.L. The afferent input to the magnocellular division of the mediodorsal thalamic nucleus in the monkey, Macaca fascicularis. J. Comp. Neurol. 256, 175–210 (1987).

    Article  CAS  Google Scholar 

  26. Jones, E.G. & Powell, T.P. Connexions of the somatic sensory cortex of the rhesus monkey. Brain 93, 37–56 (1970).

    Article  CAS  Google Scholar 

  27. Jones, E.G., Wise, S.P. & Coulter, J.D. Differential thalamic relationships of sensory-motor and parietal cortical fields in monkeys. J. Comp. Neurol. 183, 833–881 (1979).

    Article  CAS  Google Scholar 

  28. Raczkowski, D. & Diamond, I.T. Cortical connections of the pulvinar nucleus in Galago. J. Comp. Neurol. 193, 1–40 (1980).

    Article  CAS  Google Scholar 

  29. Webster, M.J., Bachevalier, J. & Ungerleider, L.G. Subcortical connections of inferior temporal areas TE and TEO in macaque monkeys. J. Comp. Neurol. 335, 73–91 (1993).

    Article  CAS  Google Scholar 

  30. Asanuma, C., Thach, W.T. & Jones, E.G. Cytoarchitectonic delineation of the ventral lateral thalamic region in the monkey. Brain Res. 286, 219–235 (1983).

    Article  CAS  Google Scholar 

  31. Asanuma, C., Thach, W.T. & Jones, E.G. Distribution of cerebellar terminations and their relation to other afferent terminations in the ventral lateral thalamic region of the monkey. Brain Res. 286, 237–265 (1983).

    Article  CAS  Google Scholar 

  32. Carpenter, M. Neuroanatomy (Williams and Wilkins, London, 1978).

  33. Goldman-Rakic, P.S. & Porrino, L.J. The primate mediodorsal (MD) nucleus and its projection to the frontal lobe. J. Comp. Neurol. 242, 535–560 (1985).

    Article  CAS  Google Scholar 

  34. Aggleton, J.P. & Mishkin, M. Projections of the amygdala to the thalamus in the cynomolgus monkey. J. Comp. Neurol. 222, 56–68 (1984).

    Article  CAS  Google Scholar 

  35. Parent, A., Mackey, A. & De Bellefeuille, L. The subcortical afferents to caudate nucleus and putamen in primate: a fluorescence retrograde double labeling study. Neuroscience 10, 1137–1150 (1983).

    Article  CAS  Google Scholar 

  36. Tuch, D.S. et al. High angular resolution diffusion imaging reveals intravoxel white matter fiber heterogeneity. Magn. Reson. Med. 48, 577–582 (2002).

    Article  Google Scholar 

  37. Pautler, R.G., Silva, A.C. & Koretsky, A.P. In vivo neuronal tract tracing using manganese-enhanced magnetic resonance imaging. Magn. Reson. Med. 40, 740–748 (1998).

    Article  CAS  Google Scholar 

  38. Kievit, J. & Kuypers, H.G. Organization of the thalamocortical connexions to the frontal lobe in the rhesus monkey. Exp. Brain Res. 29, 299–322 (1977).

    CAS  PubMed  Google Scholar 

  39. Mazziotta, J. et al. A probabilistic atlas and reference system for the human brain: International Consortium for Brain Mapping (ICBM). Philos. Trans. R. Soc. Lond B Biol. Sci. 356, 1293–1322 (2001).

    Article  CAS  Google Scholar 

  40. Andreasen, N.C. et al. Schizophrenia and cognitive dysmetria: a positron-emission tomography study of dysfunctional prefrontal-thalamic-cerebellar circuitry. Proc. Natl. Acad. Sci. USA 93, 9985–9990 (1996).

    Article  CAS  Google Scholar 

  41. Klingberg, T. et al. Microstructure of temporoparietal white matter as a basis for reading ability: evidence from diffusion tensor magnetic resonance imaging. Neuron 25, 493–500 (2000).

    Article  CAS  Google Scholar 

  42. Speelman, J.D., Schuurman, R., De Bie, R.M., Esselink, R.A. & Bosch, D.A. Stereotactic neurosurgery for tremor. Mov. Disord. 17 (Suppl. 3), S84–S88 (2002).

    Article  Google Scholar 

  43. Pollak, P. et al. Treatment results: Parkinson's disease. Mov. Disord. 17 (Suppl. 3), S75–S83 (2002).

    Article  Google Scholar 

  44. Jones, D.K., Horsfield, M.A. & Simmons, A. Optimal strategies for measuring diffusion in anisotropic systems by magnetic resonance imaging. Magn Reson. Med. 42, 515–525 (1999).

    Article  CAS  Google Scholar 

  45. Anderson, A.W. Theoretical analysis of the effects of noise on diffusion tensor imaging. Magn. Reson. Med. 46, 1174–1188 (2001).

    Article  CAS  Google Scholar 

  46. Lee, P.M. Bayesian Statistics: an Introduction (Arnold, London, 1997).

    Google Scholar 

  47. Gilks, W.R., Richardson, S. & Spiegelhalter, D.J. Markov Chain Monte Carlo in Practice (Chapman and Hall/CRC, London, 1996).

    Google Scholar 

  48. Zhang, Y., Brady, M. & Smith, S. Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Trans. Med. Imaging 20, 45–57 (2001).

    Article  CAS  Google Scholar 

  49. Smith, S.M. Fast robust automated brain extraction. Hum. Brain Mapp. 17, 143–155 (2002).

    Article  Google Scholar 

  50. Jenkinson, M. & Smith, S. Global optimisation for robust affine registration. Med. Image Anal. 5, 143–156 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the generous support of the UK Medical Research Council (P.M.M., S.M.S. and E.S.), UK Engineering and Physical Science Research Council (T.E.J.B. and S.M.S.), Wellcome Trust (H.J-B.), the Rhodes Trust (K.S.), the EPSRC-MRC IRC “From medical images and signals to clinical information” (J.M.B. and M.W.W.), the Multiple Sclerosis Society of Great Britain and Northern Ireland (separately to P.M.M. and to C.A.M.W-K. and G.J.B.) and Action Research (P.B.). We are grateful to A. Cowey, Z. Molnar, J. Devlin and G. Parker for useful comments and discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H Johansen-Berg.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Behrens, T., Johansen-Berg, H., Woolrich, M. et al. Non-invasive mapping of connections between human thalamus and cortex using diffusion imaging. Nat Neurosci 6, 750–757 (2003). https://doi.org/10.1038/nn1075

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1075

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing