Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Dynamic balance of metabotropic inputs causes dorsal horn neurons to switch functional states

Abstract

Sensory relay structures in the spinal cord dorsal horn are now thought to be active processing structures that function before supraspinal sensory integration. Dorsal horn neurons directly receive nociceptive (pain) signals from the periphery, express a high degree of functional plasticity and are involved in long-term sensitization and chronic pain. We show here that deep dorsal horn neurons (DHNs) in Wistar rats can switch their intrinsic firing properties from tonic to plateau or endogenous bursting patterns, depending upon the balance of control by metabotropic glutamate (mGlu) and GABAB receptors. We further show that this modulation acts on at least one common target, the inwardly rectifying potassium channel (Kir3). Finally, we found that these firing modes correspond to specific functional states of information transfer in which dorsal horn neurons can faithfully transmit, greatly enhance or block the transfer of nociceptive information.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Deep DHNs show three modes of firing.
Figure 2: Antagonistic modulation of a Kir current.
Figure 3: Deep DHNs receive modulatory inputs and express Kir3 channels.
Figure 4: The three DHN firing modes correspond to different states of sensory information transfer.
Figure 5: Variations of sensory information transfer as a function of input frequency and pattern.

References

  1. 1

    Willis, W.D. & Coggeshall, R.E. Sensory Mechanisms of the Spinal Cord 2nd edn. (Plenum Press, New York, 1991).

    Book  Google Scholar 

  2. 2

    Urban, L., Thompson, S.W.N. & Dray, A. Modulation of spinal excitability: cooperation between neurokinin and excitatory amino acid neurotransmitters. Trends Neurosci. 17, 432–438 (1994).

    CAS  Article  Google Scholar 

  3. 3

    Cook, A.J., Woolf, C.J., Wall, P.D. & McMahon, S.B. Dynamic receptive field plasticity in rat spinal cord dorsal horn following C-primary afferent input. Nature 325, 151–153 (1987).

    CAS  Article  Google Scholar 

  4. 4

    Millan, M.J. The induction of pain: an integrative review. Prog. Neurobiol. 57, 1–164 (1999).

    CAS  Article  Google Scholar 

  5. 5

    Woolf, C.J. & Salter, M.W. Neuronal plasticity: increasing the gain in pain. Science 288, 1765–1769 (2000).

    CAS  Article  Google Scholar 

  6. 6

    Russo, R.E. & Hounsgaard, J. Plateau-generating neurones in the dorsal horn in an in vitro preparation of the turtle spinal cord. J. Physiol. (Lond.) 493, 39–54 (1996).

    CAS  Article  Google Scholar 

  7. 7

    Morisset, V. & Nagy, F. Nociceptive integration in the rat spinal cord: role of nonlinear membrane properties of deep dorsal horn neurons. Eur. J. Neurosci. 10, 3642–3652 (1998).

    CAS  Article  Google Scholar 

  8. 8

    Morisset, V. & Nagy, F. Plateau potential-dependent windup of the response to primary afferent stimuli in rat dorsal horn neurons. Eur. J. Neurosci. 12, 3087–3095 (2000).

    CAS  Article  Google Scholar 

  9. 9

    Russo, R.E., Nagy, F. & Hounsgaard, J. Inhibitory control of plateau properties in dorsal horn neurons in the turtle spinal cord in vitro. J. Physiol. (Lond.) 506, 795–808 (1998).

    CAS  Article  Google Scholar 

  10. 10

    Le Masson, G., Le Masson, S., Debay, D. & Bal, T. Feedback inhibition controls spike transfer in hybrid thalamic circuits. Nature 417, 854–858 (2002).

    CAS  Article  Google Scholar 

  11. 11

    Dascal, N. Signaling via the G protein-activated K+ channels. Cell. Signal. 9, 551–573 (1997).

    CAS  Article  Google Scholar 

  12. 12

    Sodickson, D.L. & Bean, B.P. GABAB receptor–activated inwardly rectifying potassium current in dissociated hippocampal CA3 neurons. J. Neurosci. 16, 6374–6385 (1996).

    CAS  Article  Google Scholar 

  13. 13

    Takamori, S., Rhee, J.S., Rosenmund, C. & Jahn, R. Identification of a vesicular glutamate transporter that defines a glutamatergic phenotype in neurons. Nature 407, 189–194 (2000).

    CAS  Article  Google Scholar 

  14. 14

    Herzog, E. et al. The existence of a second vesicular glutamate transporter specifies subpopulations of glutamatergic neurons. J. Neurosci. 21, RC181 (2001).

    CAS  Article  Google Scholar 

  15. 15

    Tennigkeit, F., Schwarz, D.W. & Puil, E. Effects of metabotropic glutamate receptor activation in auditory thalamus. J. Neurophysiol. 82, 718–729 (1999).

    CAS  Article  Google Scholar 

  16. 16

    Levine, M.W. Cross-correlation between neurons: a source of information about the nervous system. Biosystems 48, 139–146 (1998).

    CAS  Article  Google Scholar 

  17. 17

    Usrey, W.M. The role of spike timing for thalamocortical processing. Curr. Opin. Neurobiol. 12, 411–417 (2002).

    CAS  Article  Google Scholar 

  18. 18

    Di Prisco, G.V., Pearlstein, E., Robitaille, R. & Dubuc, R. Role of sensory-evoked NMDA plateau potentials in the initiation of locomotion. Science 278, 1122–1125 (1997).

    CAS  Article  Google Scholar 

  19. 19

    Beurrier, C., Congar, P., Bioulac, B. & Hammond, C. Subthalamic nucleus neurons switch from single-spike activity to burst- firing mode. J. Neurosci. 19, 599–609 (1999).

    CAS  Article  Google Scholar 

  20. 20

    Kawasaki, H., Palmieri, C. & Avoli, M. Muscarinic receptor activation induces depolarizing plateau potentials in bursting neurons of the rat subiculum. J. Neurophysiol. 82, 2590–2601 (1999).

    CAS  Article  Google Scholar 

  21. 21

    Lo, F.S. & Erzurumlu, R.S. L-type calcium channel-mediated plateau potentials in barrelette cells during structural plasticity. J. Neurophysiol. 88, 794–801 (2002).

    CAS  Article  Google Scholar 

  22. 22

    Russo, R.E. & Hounsgaard, J. Dynamics of intrinsic electrophysiological properties in spinal cord neurons. Prog. Biophys. Mol. Biol. 72, 329–365 (1999).

    CAS  Article  Google Scholar 

  23. 23

    Jiang, M.C., Liu, L. & Gebhart, G.F. Cellular properties of lateral spinal nucleus neurons in the rat L6-S1 spinal cord. J. Neurophysiol. 81, 3078–3086 (1999).

    CAS  Article  Google Scholar 

  24. 24

    Jiang, M.C., Cleland, C.L. & Gebhart, G.F. Intrinsic properties of deep dorsal horn neurons in the L6-S1 spinal cord of the intact rat. J. Neurophysiol. 74, 1819–1827 (1995).

    CAS  Article  Google Scholar 

  25. 25

    Kangrga, I., Jiang, M.C. & Randic, M. Actions of (−) baclofen on rat dorsal horn neurons. Brain Res. 562, 265–275 (1991).

    CAS  Article  Google Scholar 

  26. 26

    Sharon, D., Vorobiov, D. & Dascal, N. Positive and negative coupling of the metabotropic glutamate receptors to a G protein–activated K+ channel, GIRK, in Xenopus oocytes. J. Gen. Physiol. 109, 477–490 (1997).

    CAS  Article  Google Scholar 

  27. 27

    Morisset, V. & Nagy, F. Ionic basis for plateau potentials in deep dorsal horn neurons of the rat spinal cord. J. Neurosci. 19, 7309–7316 (1999).

    CAS  Article  Google Scholar 

  28. 28

    Sharp, A.A., O'Neil, M.B., Abbott, L.F. & Marder, E. Dynamic clamp: computer-generated conductances in real neurons. J. Neurophysiol. 69, 992–995 (1993).

    CAS  Article  Google Scholar 

  29. 29

    Le Masson, G., Le Masson, S. & Moulins, M. From conductances to neural network properties: analysis of simple circuits using the hybrid network method. Prog. Biophys. Mol. Biol. 64, 201–220 (1995).

    CAS  Article  Google Scholar 

  30. 30

    McCormick, D.A. & Bal, T. Sleep and arousal: thalamocortical mechanisms. Annu. Rev. Neurosci. 20, 185–215 (1997).

    CAS  Article  Google Scholar 

  31. 31

    De Koninck, Y. & Henry, J.L. Substance P–mediated slow excitatory postsynaptic potential elicited in dorsal horn neurons in vivo by noxious stimulation. Proc. Natl. Acad. Sci. USA 88, 11344–11348 (1991).

    CAS  Article  Google Scholar 

  32. 32

    Sotgiu, M.L., Biella, G. & Riva, L. Post-stimulus afterdischarges of spinal WDR and NS units in rats with chronic nerve constriction. Neuroreport 6, 1021–1024 (1995).

    CAS  Article  Google Scholar 

  33. 33

    Woolf, C.J. & King, A.E. Subthreshold components of the cutaneous mechanoreceptive fields of dorsal horn neurons in the rat lumbar spinal cord. J. Neurophysiol. 62, 907–916 (1989).

    CAS  Article  Google Scholar 

  34. 34

    Russo, R.E. & Hounsgaard, J. Short-term plasticity in turtle dorsal horn neurons mediated by L-type Ca2+ channels. Neuroscience 61, 191–197 (1994).

    CAS  Article  Google Scholar 

  35. 35

    Baranauskas, G. & Nistri, A. Sensitization of pain pathways in the spinal cord: cellular mechanisms. Prog. Neurobiol. 54, 349–365 (1998).

    CAS  Article  Google Scholar 

  36. 36

    Herrero, J.F., Laird, J.M. & Lopez-Garcia, J.A. Wind-up of spinal cord neurons and pain sensation: much ado about something? Prog. Neurobiol. 61, 169–203 (2000).

    CAS  Article  Google Scholar 

  37. 37

    Lombard, M.C. & Larabi, Y. Electrophysiological study of the cervical dorsal horn cells in partially deafferented rats. in Advances in Pain Research and Therapy (eds. Bonica, J., Lindblom, U. & Iggo, A.) 147 (Raven Press, New York, 1983).

    Google Scholar 

  38. 38

    Calvino, B., Villanueva, L. & Le Bars, D. Dorsal horn (convergent) neurons in the intact anaesthetized arthritic rat. I. Segmental excitatory influences. Pain 28, 81–98 (1987).

    CAS  Article  Google Scholar 

  39. 39

    Asada, H., Yamaguchi, Y., Tsunoda, S. & Fukuda, Y. Relation of abnormal burst activity of spinal neurons to the recurrence of autonomy in rats. Neurosci. Lett. 213, 99–102 (1996).

    CAS  Article  Google Scholar 

  40. 40

    Bettler, B., Kaupmann, K. & Bowery, N. GABAB receptors: drugs meet clones. Curr. Opin. Neurobiol. 8, 345–350 (1998).

    CAS  Article  Google Scholar 

  41. 41

    Couve, A., Moss, S.J. & Pangalos, M.N. GABAB receptors: a new paradigm in G-protein signaling. Mol. Cell. Neurosci. 16, 296–312 (2000).

    CAS  Article  Google Scholar 

  42. 42

    Neugebauer, V. Metabotropic glutamate receptors—important modulators of nociception and pain behavior. Pain 98, 1–8 (2002).

    CAS  Article  Google Scholar 

  43. 43

    Hao, J.-X., Xu, X.-J., Yu, Y.-X., Seiger, A. & Wiesenfeld-Hallin, Z. Baclofen reverses the hypersensitivity of dorsal horn wide dynamic range neurons to mechanical stimulation after transient spinal cord ischemia; implications for a tonic GABAergic inhibitory control of myelinated fiber input. J. Neurophysiol. 68, 392–396 (1992).

    CAS  Article  Google Scholar 

  44. 44

    Lin, Q., Peng, Y.B. & Willis, W.D. Role of GABA receptor subtypes in inhibition of primate spinothalamic tract neurons: difference between spinal and periaqueductal gray inhibition. J. Neurophysiol. 75, 109–123 (1996).

    CAS  Article  Google Scholar 

  45. 45

    Russo, R.E., Nagy, F. & Hounsgaard, J. Modulation of plateau properties in dorsal horn neurones in a slice preparation of the turtle spinal cord. J. Physiol. (Lond.) 499, 459–474 (1997).

    CAS  Article  Google Scholar 

  46. 46

    Delgado-Lezama, R., Perrier, J.F., Nedergaard, S., Svirskis, G. & Hounsgaard, J. Metabotropic synaptic regulation of intrinsic response properties of turtle spinal motoneurons. (J. Physiol. Lond.) 504, 97–102 (1997).

    CAS  Article  Google Scholar 

  47. 47

    Schneider, S.P., Eckert, W.A. & Light, A.R. Opioid-activated postsynaptic, inward rectifying potassium currents in whole cell recordings in substantia gelatinosa neurons. J. Neurophysiol. 80, 2954–2962 (1998).

    CAS  Article  Google Scholar 

  48. 48

    Adriaensen, H., Gybels, J., Handwerker, H.O. & Van Hees, J. Response properties of thin myelinated (A-delta) fibers in human skin nerves. J. Neurophysiol. 49, 111–122 (1983).

    CAS  Article  Google Scholar 

  49. 49

    Destexhe, A., Mainen, Z.F. & Sejnowski, T.J. Synthesis of models for excitable membranes, synaptic transmission and neuromodulation using a common kinetic formalism. J. Comput. Neurosci. 1, 195–230 (1994).

    CAS  Article  Google Scholar 

  50. 50

    Inokuchi, H., Yoshimura, M., Yamada, S., Polosa, C. & Nishi, S. Fast excitatory postsynaptic potentials and the responses to excitant amino acids of sympathetic preganglionic neurons in the slice of the cat spinal cord. Neuroscience 46, 657–667 (1992).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We are grateful to S. El Mestikawy (INSERM U513) for the gift of the anti-VGluT antibodies and to S. Shefchyk (SCRC, Univ. of Manitoba Winnipeg) for helpful discussions and careful reading of the manuscript. This work was supported by grants from the Conseil Régional d'Aquitaine (20010301213), the Direction Générale des Armées (01.34.012.00470.75.01), the Institut UPSA de la Douleur, the Fondation de la Recherche Médicale (ARI20010406005/1) and the Fondation Singer-Polignac.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Frédéric Nagy.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Derjean, D., Bertrand, S., Le Masson, G. et al. Dynamic balance of metabotropic inputs causes dorsal horn neurons to switch functional states. Nat Neurosci 6, 274–281 (2003). https://doi.org/10.1038/nn1016

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing