Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Neural mechanisms of general fluid intelligence

Abstract

We used an individual-differences approach to test whether general fluid intelligence (gF) is mediated by brain regions that support attentional (executive) control, including subregions of the prefrontal cortex. Forty-eight participants first completed a standard measure of gF (Raven's Advanced Progressive Matrices). They then performed verbal and nonverbal versions of a challenging working-memory task (three-back) while their brain activity was measured using functional magnetic resonance imaging (fMRI). Trials within the three-back task varied greatly in the demand for attentional control because of differences in trial-to-trial interference. On high-interference trials specifically, participants with higher gF were more accurate and had greater event-related neural activity in several brain regions. Multiple regression analyses indicated that lateral prefrontal and parietal regions may mediate the relation between ability (gF) and performance (accuracy despite interference), providing constraints on the neural mechanisms that support gF.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Behavioral protocol, three-back task.
Figure 2: Three-back task performance (n = 58).
Figure 3: Regions in which gF predicted lure-trial activity, using a priori (red) and whole-brain (yellow) search criteria, shown on the folded surface of a standard brain48.
Figure 4: Region-level relations between gF and brain activity in left lateral PFC (BA 46/45, 21 voxels from whole brain search, n = 48).

References

  1. 1

    Kosslyn, S.M. et al. Bridging psychology and biology: the analysis of individuals in groups. Am. Psychol. 57, 341–351 (2002).

    Article  Google Scholar 

  2. 2

    Cattell, R.B. Abilities: Their Structure, Growth and Action (Houghton Mifflin, Boston, 1971).

    Google Scholar 

  3. 3

    Sternberg, R.J. The holey grail of general intelligence. Science 289, 399–401 (2000).

    CAS  Article  Google Scholar 

  4. 4

    Kane, M.J. & Engle, R.W. The role of prefrontal cortex in working-memory capacity, executive attention and general fluid intelligence: an individual-differences perspective. Psychonom. Bull. Rev. (in press).

  5. 5

    Deary, I.J. Looking Down on Human Intelligence (Oxford Univ. Press, New York, 2000).

    Google Scholar 

  6. 6

    Sternberg, R.J. Beyond IQ: a Triarchic Theory of Human Intelligence (Cambridge Univ. Press, Cambridge, 1985).

    Google Scholar 

  7. 7

    Carpenter, P.A., Just, M.A. & Shell, P. What one intelligence test measures: a theoretical account of the processing in the Raven Progressive Matrices Test. Psychol. Rev. 97, 404–431 (1990).

    CAS  Article  Google Scholar 

  8. 8

    Engle, R.W., Kane, M.J. & Tuholski, S.W. Individual differences in working memory capacity and what they tell us about controlled attention, general fluid intelligence, and functions of the prefrontal cortex. in Models of Working Memory (eds. Miyake, A. & Shah, P.) 102–134 (Cambridge University Press, New York, 1999).

    Google Scholar 

  9. 9

    Kyllonen, P.C. & Christal, R.E. Reasoning ability is (little more than) working memory capacity?! Intelligence 14, 389–433 (1990).

    Article  Google Scholar 

  10. 10

    Conway, A.R.A., Cowan, N., Bunting, M.F., Therriault, D.J. & Minkoff, S.R.B. A latent variable analysis of working memory capacity, short term memory capacity, processing speed and general fluid intelligence. Intelligence 30, 163–183 (2002).

    Article  Google Scholar 

  11. 11

    Engle, R.W., Tuholski, S.W., Laughlin, J.E. & Conway, A.R.A. Working memory, short-term memory and general fluid intelligence: a latent-variable approach. J. Exp. Psychol. Gen. 128, 309–331 (1999).

    Article  Google Scholar 

  12. 12

    Prabhakaran, V., Smith, J.A.L., Desmond, J.E., Glover, G.H. & Gabrieli, J.D.E. Neuronal substrates of fluid reasoning: an fMRI study of neocortical activation during performance of the Raven's Progressive Matrices Test. Cogn. Psychol. 33, 43–63 (1997).

    CAS  Article  Google Scholar 

  13. 13

    Thompson, P.M. et al. Genetic influences on brain structure. Nat. Neurosci. 4, 1253–1258 (2001).

    CAS  Article  Google Scholar 

  14. 14

    Fritsch, G. & Hitzig, E. Ueber die elektrische Erregbarkeit des Grosshirns. Archiv Anatomie Physiologie Wissenschaftliche Medicin 37, 300–332 (1870).

    Google Scholar 

  15. 15

    Markowitsch, H.J. & Kessler, J. Massive impairment in executive functions with partial preservation of other cognitive functions: the case of a young patient with severe degeneration of the prefrontal cortex. Exp. Brain Res. 133, 94–102 (2000).

    CAS  Article  Google Scholar 

  16. 16

    Duncan, J. et al. A neural basis for general intelligence. Science 289, 457–460 (2000).

    CAS  Article  Google Scholar 

  17. 17

    Petersen, S.E., van Mier, H., Fiez, J.A. & Raichle, M.E. The effects of practice on the functional anatomy of task performance. Proc. Natl. Acad. Sci. USA 95, 853–860 (1998).

    CAS  Article  Google Scholar 

  18. 18

    Braver, T.S. et al. A parametric study of prefrontal cortex involvement in human working memory. Neuroimage 5, 49–62 (1997).

    CAS  Article  Google Scholar 

  19. 19

    Cabeza, R. & Nyberg, L. Imaging cognition II: an empirical review of 275 PET and fMRI studies. J. Cogn. Neurosci. 12, 1–47 (2000).

    CAS  Article  Google Scholar 

  20. 20

    D'Esposito, M., Postle, B.R., Jonides, J. & Smith, E.E. The neural substrate and temporal dynamics of interference effects in working memory as revealed by event-related functional MRI. Proc. Natl. Acad. Sci. USA 96, 7514–7519 (1999).

    CAS  Article  Google Scholar 

  21. 21

    Jonides, J., Smith, E., Marshuetz, C., Koeppe, R. & Reuter-Lorenz, P.A. Inhibition in verbal working memory revealed by brain activation. Proc. Natl. Acad. Sci. USA 95, 8410–8413 (1998).

    CAS  Article  Google Scholar 

  22. 22

    MacDonald, A.W., Cohen, J.D., Stenger, V.A. & Carter, C.S. Dissociating the role of the dorsolateral prefrontal cortex and anterior cingulate cortex in cognitive control. Science 288, 1835–1838 (2000).

    CAS  Article  Google Scholar 

  23. 23

    Carter, C.S. et al. Anterior cingulate cortex, error detection and the online monitoring of performance. Science 280, 747–749 (1998).

    CAS  Article  Google Scholar 

  24. 24

    Paus, T., Koski, L., Caramanos, Z. & Westbury, C. Regional differences in the effects of task difficulty and motor output on blood flow response in the human anterior cingulate cortex: a review of 107 PET activation studies. NeuroReport 9, R37–R47 (1998).

    CAS  Article  Google Scholar 

  25. 25

    Posner, M.I. & Petersen, S.E. The attention system of the human brain. Annu. Rev. Neurosci. 13, 25–42 (1990).

    CAS  Article  Google Scholar 

  26. 26

    Schmahmann, J. & Sherman, J. The cerebellar cognitive affective syndrome. Brain 121, 561–579 (1998).

    Article  Google Scholar 

  27. 27

    Gruber, O. Effects of domain-specific interference on brain activation associated with verbal working memory task performance. Cereb. Cortex 11, 1047–1055 (2001).

    CAS  Article  Google Scholar 

  28. 28

    Bischoff-Grethe, A., Ivry, R.B. & Grafton, S.T. Cerebellar involvement in response reassignment rather than attention. J. Neurosci. 22, 546–553 (2002).

    CAS  Article  Google Scholar 

  29. 29

    Donaldson, D.I., Petersen, S.E., Ollinger, J.M. & Buckner, R.L. Dissociating item and state components of recognition memory using fMRI. Neuroimage 13, 129–142 (2001).

    CAS  Article  Google Scholar 

  30. 30

    Baron, R.M. & Kenny, D.A. The moderator-mediator variable distinction in social psychological research: conceptual, strategic, and statistical considerations. J. Pers. Soc. Psychol. 51, 1173–1182 (1986).

    CAS  Article  Google Scholar 

  31. 31

    Botvinick, M.M., Braver, T.S., Barch, D.M., Carter, C.S. & Cohen, J.C. Conflict monitoring and cognitive control. Psychol. Rev. 108, 624–652 (2001).

    CAS  Article  Google Scholar 

  32. 32

    Braver, T.S., Barch, D.M., Gray, J.R., Molfese, D.L. & Snyder, A. Anterior cingulate cortex and response conflict: effects of frequency, inhibition and errors. Cereb. Cortex 11, 825–836 (2001).

    CAS  Article  Google Scholar 

  33. 33

    Koechlin, E., Basso, G., Pietrini, P., Panzer, S. & Grafman, J. The role of the anterior prefrontal cortex in human cognition. Nature 399, 148–151 (1999).

    CAS  Article  Google Scholar 

  34. 34

    Cronbach, L.J. The two disciplines of scientific psychology. Am. Psychol. 12, 671–684 (1957).

    Article  Google Scholar 

  35. 35

    Brodmann, K. Ergebnisse über die vergleichende histologische lokalisation der grosshirnrinde mit besonderer berücksichtigung des stirnhirns. Anatomischer Anzeiger 41 (Suppl.), 157–216 (1912).

    Google Scholar 

  36. 36

    Ceci, S.J. How much does schooling influence general intelligence and its cognitive components? A reassessment of the evidence. Dev. Psychol. 27, 703–722 (1991).

    Article  Google Scholar 

  37. 37

    Ceci, S.J. & Williams, W.M. Schooling, intelligence and income. Am. Psychol. 52, 1051–1058 (1997).

    Article  Google Scholar 

  38. 38

    Neisser, U. (ed.) The Rising Curve: Long-term Gains in IQ and Related Measures (American Psychological Association, Washington, DC, 1998).

    Google Scholar 

  39. 39

    Raven, J., Raven, J.C. & Court, J.H. Manual for Raven's Progressive Matrices and Vocabulary Scales (Oxford Psychologists Press, Oxford, UK, 1998).

    Google Scholar 

  40. 40

    Cohen, J., MacWhinney, B., Flatt, M. & Provost, J. PsyScope: an interactive graphic system for designing and controlling experiments in the psychology laboratory using Macintosh computers. Behav. Res. Methods Instr. Comput. 25, 257–271 (1993).

    Article  Google Scholar 

  41. 41

    Gray, J.R., Braver, T.S. & Raichle, M.E. Integration of emotion and cognition in the lateral prefrontal cortex. Proc. Natl. Acad. Sci. USA 99, 4115–4120 (2002).

    CAS  Article  Google Scholar 

  42. 42

    Talairach, J. & Tournoux, P. Co-planar Stereotaxic Atlas of the Human Brain (Thieme, New York, 1988).

    Google Scholar 

  43. 43

    Gray, J.R. & Braver, T.S. Personality predicts working memory related activation in the caudal anterior cingulate cortex. Cogn. Affect. Behav. Neurosci. 2, 64–75 (2002).

    Article  Google Scholar 

  44. 44

    Boynton, G.M., Engel, S.A., Glover, G.H. & Heeger, D.J. Linear systems analysis of functional magnetic resonance imaging in human V1. J. Neurosci. 16, 4207–4221 (1996).

    CAS  Article  Google Scholar 

  45. 45

    McAvoy, M.P., Ollinger, J.M. & Buckner, R.L. Cluster size thresholds for assessment of significant activation in fMRI. Neuroimage 13, S198 (2001).

    Article  Google Scholar 

  46. 46

    Price, C.J. & Friston, K.J. Cognitive conjunction: a new approach to brain activation experiments. Neuroimage 5, 261–270 (1997).

    CAS  Article  Google Scholar 

  47. 47

    Cohen, J. & Cohen, P. Applied Multiple Regression/correlation Analysis for the Behavioral Sciences (L. Erlbaum, Hillsdale, New Jersey, 1983).

    Google Scholar 

  48. 48

    Van Essen, D.C. Windows on the brain. The emerging role of atlases and databases in neuroscience. Curr. Opin. Neurobiol. 12, 574–579 (2002).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This material is based on work supported by the National Science Foundation (grant 0001908). C.F.C. was supported by a Director of Central Intelligence postdoctoral fellowship. The authors thank D.M. Barch, R.W. Engle, A.R.A. Conway, G.C. Burgess, M. Storandt, M.E. Glickman, G.E. Miller, S.J. Ceci, C.M. Hoyer and J.M. Zelensky.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Todd S. Braver.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gray, J., Chabris, C. & Braver, T. Neural mechanisms of general fluid intelligence. Nat Neurosci 6, 316–322 (2003). https://doi.org/10.1038/nn1014

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing