Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A role for CK2 in the Drosophila circadian oscillator

Abstract

The posttranslational modification of clock proteins is critical for the function of circadian oscillators. By genetic analysis of a Drosophila melanogaster circadian clock mutant known as Andante, which has abnormally long circadian periods, we show that casein kinase 2 (CK2) has a role in determining period length. Andante is a mutation of the gene encoding the β subunit of CK2 and is predicted to perturb CK2β subunit dimerization. It is associated with reduced β subunit levels, indicative of a defect in α:β association and production of the tetrameric α2:β2 holoenzyme. Consistent with a direct action on the clock mechanism, we show that CK2β is localized within clock neurons and that the clock proteins Period (Per) and Timeless (Tim) accumulate to abnormally high levels in the Andante mutant. Furthermore, the nuclear translocation of Per and Tim is delayed in Andante, and this defect accounts for the long-period phenotype of the mutant. These results suggest a function for CK2-dependent phosphorylation in the molecular oscillator.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Behavioral and molecular characterization of CK2β mutants.
Figure 2: The Andante mutation is a G→A transversion, resulting in a M→I amino acid substitution in a conserved domain of CK2β.
Figure 3: Temporal and spatial expression of CK2 subunits in wild type and Andante.
Figure 4: The Andante mutation alters steady-state levels of Per and Tim.
Figure 5: Nuclear accumulation of Per and Tim is abnormally late in Andante/mbu26-2 mutants.

Similar content being viewed by others

References

  1. Young, M.W. & Kay, S.A. Time zones: a comparative genetics of circadian clocks. Nat. Rev. Genet. 2, 702–715 (2001).

    Article  CAS  Google Scholar 

  2. Price, J.L. et al. double-time is a novel Drosophila clock gene that regulates PerIOD protein accumulation. Cell 94, 83–95 (1998).

    Article  CAS  Google Scholar 

  3. Lee, C., Etchegaray, J.P., Cagampang, F.R., Loudon, A.S. & Reppert, S.M. Posttranslational mechanisms regulate the mammalian circadian clock. Cell 107, 855–867 (2001).

    Article  CAS  Google Scholar 

  4. Martinek, S., Inonog, S., Manoukian, A.S. & Young, M.W. A role for the segment polarity gene shaggy/GSK 3 in the Drosophila circadian clock. Cell 105, 769–779 (2001).

    Article  CAS  Google Scholar 

  5. Konopka, R.J., Smith, R.F. & Orr, D. Characterization of Andante, a new Drosophila clock mutant, and its interactions with other clock mutants. J. Neurogenet. 7, 103–114 (1991).

    Article  CAS  Google Scholar 

  6. Newby, L.M. et al. Mutational analysis of the Drosophila miniature-dusky (m-dy) locus: effects on cell size and circadian rhythms. Genetics 128, 571–582 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Newby, L.M. & Jackson, F.R. Developmental and genetic mosaic analysis of Drosophila m-dy mutants: tissue foci for behavioral and morphogenetic defects. Dev. Genet. 16, 85–93 (1995).

    Article  CAS  Google Scholar 

  8. Jauch, E., Melzig, J., Brkulj, M. & Raabe, T. In vivo functional analysis of Drosophila protein kinase CK2 β subunit. Gene 298, 29–39 (2002).

    Article  CAS  Google Scholar 

  9. Sugano, S., Andronis, C., Ong, M.S., Green, R.M. & Tobin, E.M. The protein kinase CK2 is involved in regulation of circadian rhythms in Arabidopsis. Proc. Natl. Acad. Sci. USA 96, 12362–12366 (1999).

    Article  CAS  Google Scholar 

  10. DiBartolomeis, S.M., Akten, B., Genova, G., Roberts, M.A. & Jackson, F.R. Molecular analysis of the Drosophila miniature-dusky (m-dy) gene complex: m-dy mRNAs encode transmembrane proteins with similarity to C. elegans cuticulin. Mol. Genet. Genomics 267, 564–576 (2002).

    Article  CAS  Google Scholar 

  11. Chantalat, L. et al. Crystal structure of the human protein kinase CK2 regulatory subunit reveals its zinc finger-mediated dimerization. EMBO J. 18, 2930–2940 (1999).

    Article  CAS  Google Scholar 

  12. Niefind, K., Guerra, B., Ermakowa, I. & Issinger, O.-G. Crystal structure of human protein CK2: insights into basic properties of the CK2 holoenzyme. EMBO J. 20, 5320–5331 (2001).

    Article  CAS  Google Scholar 

  13. Bidwai, A.P., Reed, J.C. & Glover, C.V. Phosphorylation of calmodulin by the catalytic subunit of casein kinase II is inhibited by the regulatory subunit. Arch. Biochem. Biophys. 300, 265–270 (1993).

    Article  CAS  Google Scholar 

  14. Claridge-Chang, A. et al. Circadian regulation of gene expression systems in the Drosophila head. Neuron 32, 657–671 (2001).

    Article  CAS  Google Scholar 

  15. McDonald, M.J. & Rosbash, M. Microarray analysis and organization of circadian gene expression in Drosophila. Cell 107, 567–578 (2001).

    Article  CAS  Google Scholar 

  16. Ueda, H.R. et al. Genome-wide transcriptional orchestration of circadian rhythms in Drosophila. J. Biol. Chem. 277, 14048–14052 (2002).

    Article  CAS  Google Scholar 

  17. Lin, Y. et al. Influence of the period-dependent circadian clock on diurnal, circadian, and aperiodic gene expression in Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 99, 9562–9567 (2002).

    Article  CAS  Google Scholar 

  18. Luscher, B. & Litchfield, D.W. Biosynthesis of casein kinase II in lymphoid cell lines. Eur. J. Biochem. 220, 521–526 (1994).

    Article  CAS  Google Scholar 

  19. Bidwai, A.P., Zhao, W. & Glover, C.V. A gene located at 56F1-2 in Drosophila melanogaster encodes a novel metazoan beta-like subunit of casein kinase II. Mol. Cell Biol. Res. Commun. 1, 21–28 (1999).

    Article  CAS  Google Scholar 

  20. Helfrich-Förster, C. The period clock gene is expressed in central nervous system neurons which also produce a neuropeptide that reveals the projections of circadian pacemaker cells within the brain of Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 92, 612–616 (1995).

    Article  Google Scholar 

  21. Edery, I., Zwiebel, L.J., Dembinska, M.E. & Rosbash, M. Temporal phosphorylation of the Drosophila period protein. Proc. Natl. Acad. Sci. USA 91, 2260–2264 (1994).

    Article  CAS  Google Scholar 

  22. Lee, C., Parikh, V., Itsukaichi, T., Bae, K. & Edery, I. Resetting the Drosophila clock by photic regulation of Per and a Per-Tim complex. Science 271, 1740–1744 (1996).

    Article  CAS  Google Scholar 

  23. Myers, M.P., Wager-Smith, K., Rothenfluh-Hilfiker, A. & Young, M.W. Light induced degradation of TimELESS and entrainment of the Drosophila circadian clock. Science 271, 1736–1740 (1996).

    Article  CAS  Google Scholar 

  24. Zeng, H., Qian, Z., Myers, M.P., & Rosbash, M. A light entrainment mechanism for the Drosophila circadian clock. Nature 380, 129–135 (1996).

    Article  CAS  Google Scholar 

  25. Hunter-Ensor, M., Ousley, A. & Sehgal, A. Regulation of the Drosophila protein timeless suggests a mechanism for resetting the circadian clock by light. Cell 84, 677–685 (1996).

    Article  CAS  Google Scholar 

  26. Curtin, K.D., Huang, Z.J. & Rosbash, M. Temporally regulated nuclear entry of the Drosophila period protein contributes to the circadian clock. Neuron 14, 365–372 (1995).

    Article  CAS  Google Scholar 

  27. Shafer, O.T., Rosbash, M. & Truman, J.W. Sequential nuclear accumulation of the clock proteins period and timeless in the pacemaker neurons of Drosophila melanogaster. J. Neurosci. 22, 5946–5954 (2002).

    Article  CAS  Google Scholar 

  28. Kloss, B., Rothenfluh, A., Young, M.W. & Saez, L. Phosphorylation of period is influenced by cycling physical associations of double-time, period and timeless in the Drosophila clock. Neuron 30, 699–706 (2001).

    Article  CAS  Google Scholar 

  29. Orr, D.P. Behavioral Neurogenetic Studies of a Circadian Clock in Drosophila melanogaster. Thesis, California Institute of Technology (1982).

  30. Helfrich-Förster, C. et al. Ectopic expression of the neuropeptide pigment-dispersing factor alters behavioral rhythms in Drosophila melanogaster. J. Neurosci. 20, 3339–3353 (2000).

    Article  Google Scholar 

  31. Park, J.H. et al. Differential regulation of circadian pacemaker output by separate clock genes in Drosophila. Proc. Natl. Acad. Sci. USA 97, 3608–3613 (2000).

    Article  CAS  Google Scholar 

  32. Yang, Z. & Sehgal, A. Role of molecular oscillations in generating behavioral rhythms in Drosophila. Neuron 29, 453–467 (2001).

    Article  CAS  Google Scholar 

  33. Yang, Y., Cheng, P. & Liu, Y. Regulation of the Neurospora circadian clock by casein kinase II. Genes Dev. 16, 994–1006 (2002).

    Article  CAS  Google Scholar 

  34. Levine, J.D., Casey, C.I., Kalderon, D.D. & Jackson, F.R. Altered circadian pacemaker functions and cyclic AMP rhythms in the Drosophila learning mutant dunce. Neuron 13, 967–974 (1994).

    Article  CAS  Google Scholar 

  35. Sidote, D., Majercak, J., Parikh, V., & Edery, I. Differential effects of light and heat on the Drosophila circadian clock proteins Per and Tim. Mol. Cell. Biol. 18, 2004–2013 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Schroeder and M. Roberts for help and advice, R. McConnell and the Tufts Integrated Confocal Facility for imaging services, M. Berne and the Tufts Molecular Core for DNA sequencing services, the Bloomington Stock Center for fly stocks and H. Dircksen (Universität Bonn) and R. Rao (University of West Florida) for anti-PDF antibody. We are grateful to R. Allada for communicating data on the circadian function of Drosophila CK2α prior to publication. This work was supported by the National Institutes of Health (F.R.J. and I.E.) and the Deutsche Forschungsgemeinschaft (T.R.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Rob Jackson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akten, B., Jauch, E., Genova, G. et al. A role for CK2 in the Drosophila circadian oscillator. Nat Neurosci 6, 251–257 (2003). https://doi.org/10.1038/nn1007

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1007

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing