Receptive fields of disparity-selective neurons in macaque striate cortex

  • A Correction to this article was published on 01 April 2000


To identify neuronal mechanisms underlying stereopsis, we characterized interactions between inputs from the two eyes in disparity-selective neurons in macaque V1. All disparity-selective cells showed suppressive interactions between the right and left eyes, and some showed facilitatory interactions. Disparity selectivity was narrower than the receptive-field width and was constant across the receptive field. Such position-invariant disparity selectivity is also found in anesthetized cat V1. Complex cells have been suggested to inherit their disparity selectivity from simple cells with receptive fields mismatched between the two eyes. However, we found no such antecedent disparity-tuned simple cells. We did find disparity-selective cells with some simple-cell characteristics, but surprisingly, they also showed position-invariant disparity selectivity rather than simple linear binocular interactions.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Objects nearer or farther than the plane of fixation cast images on noncorresponding parts of the two retinae; arrowheads indicate corresponding positions.
Figure 2: Responses from a 'tuned near' complex cell.
Figure 3: Reverse-correlation binocular-response maps corrected for eye position (top row) and binocular nonlinear interaction maps (bottom row) at 60 ms before each spike for a 'tuned far' complex cell recorded in alert macaque V1.
Figure 4: Elongation ratio and angle of the peak region in binocular response maps for all disparity-tuned cells in this study in addition to 27 non-stereo cells.
Figure 5: Reverse-correlation binocular-response maps corrected for eye position and binocular non-linear interaction maps for a 'tuned inhibitory' cell.
Figure 6: Reverse-correlation binocular-response maps corrected for eye position for four cells with spatially offset light- and dark-excitatory response regions.
Figure 7: (a) Optimum horizontal disparities (determined from binocular response maps) as functions of spatial offset of the peaks in the two eyes' receptive fields for complex cells and for spatially offset cells.


  1. 1

    Wheatstone, C. Contributions to the physiology of vision—part the first. On some remarkable, and hitherto unobserved phenomena of binocular vision. Phil. Trans. R. Soc. (Lond.) 128, 371–394 (1838).

  2. 2

    Barlow, H. B., Blakemore, C. & Pettigrew, J. D. The neural mechanism of binocular depth discrimination. J. Physiol. (Lond.) 193, 327– 342 (1967).

  3. 3

    Nikara, T., Bishop, P. O. & Pettigrew, J. D. Analysis of retinal correspondence by studying receptive fields of binocular single units in cat striate cortex. Exp. Brain Res. 6, 353–372 (1968).

  4. 4

    Pettigrew, J. D., Nikara, T. & Bishop, P. O. Binocular interaction on single units in cat striate cortex: simultaneous stimulation by single moving slit with receptive fields in correspondence. Exp. Brain Res. 6, 391–410 (1968).

  5. 5

    Joshua, D. E. & Bishop, P. O. Binocular single vision and depth discrimination. Receptive field disparities for central and peripheral vision and binocular interaction on peripheral single units in cat striate cortex. Exp. Brain Res. 10, 389– 416 (1970).

  6. 6

    Bishop, P. O., Henry, G. H. & Smith, C. J. Binocular interaction fields of single units in the cat striate cortex. J. Physiol. (Lond.) 216, 39–68 (1971).

  7. 7

    Fischer, B. & J. Krüger, J. Disparity tuning and binocularity of single neurons in the cat visual cortex. Exp. Brain. Res. 35, 1–8 (1979).

  8. 8

    Ferster, D. A comparison of binocular depth mechanisms in areas 17 and 18 of the cat visual cortex. J. Physiol. (Lond.) 311, 623– 655 (1981).

  9. 9

    Ohzawa, I. DeAngelis, G. C. & Freeman, R. D. Stereoscopic depth discrimination in the visual cortex: neurons ideally suited as disparity detectors. Science 249, 1037–1041 (1990).

  10. 10

    Ohzawa, I., DeAngelis, G. C. & Freeman, R. D. Encoding of binocular disparity by complex cells in the cat's visual cortex. J. Neurophysiol. 77, 2879–2909 (1997).

  11. 11

    Hubel, D. H. & Wiesel, T. N. Stereoscopic vision in macaque monkey. Cells sensitive to binocular depth in area 18 of the macaque monkey cortex. Nature 225, 41– 42 (1970).

  12. 12

    Poggio, G. F., Doty, R. W. Jr. & Talbot, W. H. Foveal striate cortex of behaving monkey: single-neuron responses to square-wave gratings during fixation of gaze. J. Neurophysiol. 40, 1369–1391 (1977).

  13. 13

    Clarke, P. G., Donaldson, I. M. & Whitteridge, D. Binocular visual mechanisms in cortical areas I and II of the sheep. J. Physiol. (Lond.) 256, 509–526 (1976).

  14. 14

    Pettigrew, J. D. & Konishi, M. Neurons selective for orientation and binocular disparity in the visual Wulst of the barn owl (Tyto alba). Science 193, 675– 678 (1976).

  15. 15

    Poggio, G. F. & Fischer, B. Binocular interaction and depth sensitivity in striate and prestriate cortex of behaving rhesus monkey. J. Neurophysiol. 40, 1392–1405 (1977).

  16. 16

    Poggio, G. F., Gonzales, F. & Krause, F. Stereoscopic mechanisms in monkey visual cortex: binocular correlation and disparity selectivity. J. Neurosci. 8, 4531–4550 (1988).

  17. 17

    Poggio, G. F. Mechanisms of stereopsis in monkey visual cortex. Cereb. Cortex 3, 193–204 (1995).

  18. 18

    Hubel, D. H. & Wiesel, T. N. Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. J. Physiol. (Lond.) 160, 106–154 (1962).

  19. 19

    Ohzawa, I., DeAngelis, G. C. & Freeman, R. D. Encoding disparity by simple cells in the cat's visual cortex. J. Neurophysiol. 75, 1779– 1805 (1996).

  20. 20

    Anzai, A., Ohzawa, I. & Freeman, R. D. Neural mechanisms underlying binocular fusion and stereopsis: position vs. phase. Proc. Natl. Acad. Sci. USA 94, 5438–5443 (1997).

  21. 21

    Qian, N. Binocular disparity and the perception of depth. Neuron 18, 359–368 (1997).

  22. 22

    Jones, J. P. & Palmer, L. A. The two-dimensional spatial structure of simple receptive fields in cat striate cortex. J. Neurophysiol. 58, 1187–1211 (1987).

  23. 23

    Livingstone, M. S. Mechanisms of direction selectivity in macaque V1. Neuron 20, 509–526 (1998).

  24. 24

    Cumming, B. G. & Parker, A. J. Responses of primary visual cortical neurons to binocular disparity without depth perception. Nature 389, 280–283 (1997).

  25. 25

    Movshon, J. A., Thompson, I. D. & Tolhurst, D. J. The receptive-field organization of complex cells in the cat's striate cortex. J. Physiol. (Lond.) 283, 79–99 (1978).

  26. 26

    Livingstone, M. S. & Hubel, D. H. Anatomy and physiology of a color system in the primate visual cortex. J. Neurosci. 4, 309–356 (1984).

  27. 27

    Hubel, D. H. & Wiesel, T. N. Receptive fields and functional architecture of monkey striate cortex. J. Physiol. (Lond.) 195, 215–243 (1968).

  28. 28

    Schiller, P. H., Finlay, B. L. & Volman, S. F. Quantitative studies of single-cell properties in monkey striate cortex. I. Spatiotemporal organization of receptive fields. J. Neurophysiol. 39, 1288– 1319 (1976).

  29. 29

    Blasdel, G. G. & Fitzpatrick, D. Physiological organization of layer 4 in macaque striate cortex. J. Neurosci. 4, 880–895 (1984).

  30. 30

    Gonzalez, F., Alonso, J. M., Relova, J. L. & Perez, R. Receptive field asymmetries and sensitivity to random dot stereograms. Arch. Ital. Biol. 134, 169–184 (1996).

  31. 31

    Anzai, A., Ohzawa, I. & Freeman, R. D. Neural mechanisms for processing binocular information. I. Simple cells. J. Neurophysiol. (in press).

  32. 32

    Koch C. & Poggio, T. in Synaptic Function(eds. Edelman, G. M., Gall, W. E. & Cowan, W. M.) 637– 685 (Wiley, New York, 1987).

  33. 33

    Mel, B. W., Ruderman, D. L. & Archie, K. A. in Advances in Neural Information Processing Systems Vol. 10 (eds. Jordan, M. I., Kearns, M. J. & Solla, S. A.) 208–214 (MIT Press, Cambridge, Massachusetts, 1998).

  34. 34

    Mel, B. W., Ruderman, D. L. & Archie, K. A. Translation-invariant orientation tuning in visual "complex" cells could derive from intradendritic computations. J. Neurosci. 18, 4325–4334 (1998).

  35. 35

    Mel, B. W. Synaptic integration in an excitable dendritic tree. J. Neurophysiol. 70, 1086–1101 (1993).

  36. 36

    Wurtz, R. H. Visual receptive fields of striate cortex neurons in awake monkeys. J. Neurophysiol. 32, 727–742 (1969).

  37. 37

    Judge, S. J. et al. Implantation of magnetic search coils for measurement of eye position: an improved method. Vision Res. 20, 535–538 (1980).

  38. 38

    Motter, B. C. & Poggio, G. F. Binocular fixation in the rhesus monkey: spatial and temporal characteristics. Exp. Brain Res. 54, 304–314 (1984).

  39. 39

    Trotter, Y. et al. Modulation of neural stereoscopic processing in primate area V1 by viewing distance. Science 257, 1279–1282 (1992).

  40. 40

    Snodderly, D. M. & Gur, M. Organization of striate cortex of alert, trained monkeys (Macaca fascicularis): ongoing activity, stimulus selectivity, and widths of receptive field activating regions. J. Neurophysiol. 74, 2100–2125 (1995).

Download references


This work was funded by NIH grant EY10203. David Freeman did the computer programming. Gail Robertson provided technical assistance. Clay Reid, Bevil Conway, Terrence Sejnowski, Rajesh Rao, Niall McLoughlin, Bartlett Mel and Tomaso Poggio provided suggestions on the manuscript.

Author information

Correspondence to Margaret S. Livingstone.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Livingstone, M., Tsao, D. Receptive fields of disparity-selective neurons in macaque striate cortex . Nat Neurosci 2, 825–832 (1999).

Download citation

Further reading