Continual remodeling of postsynaptic density and its regulation by synaptic activity

Abstract

A postsynaptic density (PSD) protein, PSD-95, was tagged with green fluorescent protein (GFP-PSD-95) and expressed in cultured hippocampal neurons using recombinant adenoviruses. GFP-PSD-95 was selectively localized to excitatory postsynaptic sites. Time-lapse fluorescence imaging of hippocampal neurons revealed that >20% of GFP-PSD-95 clusters turned over within 24 hours. The appearance rate of clusters was higher than the disappearance rate, and this difference accounted for the gradual increase of the cluster density observed in culture. Dynamics of PSD-95 clusters were also inhibited by blockers of excitatory synaptic transmission. Continual PSD turnover and its regulation by synaptic activity may be important in activity-dependent remodeling of neuronal connections.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Localization of GFP-PSD-95 to dendritic spines.
Figure 2: Localization of GFP-PSD-95 to excitatory postsynaptic sites.
Figure 3: Dynamic behavior of GFP-PSD-95 clusters.
Figure 4: Turnover of PSD-95 clusters in hippocampal pyramidal neurons on day 19 of culture.
Figure 5: Statistical analysis of PSD-95 turnover in hippocampal pyramidal neurons.
Figure 6: Increase of PSD-95 immunoreactive clusters in cultured hippocampal neurons.
Figure 7: Electrophysiological analysis of hippocampal pyramidal neurons in culture.
Figure 8: Turnover of PSD-95 clusters is regulated by synaptic activity.

References

  1. 1

    Burns, M. E. & Augustine, G. J. Synaptic structure and function: dynamic organization yields architectural precision. Cell 83, 187–194 (1995).

  2. 2

    Bolshakov, V. Y., Golan, H., Kandel, E. R. & Siegelbaum, S. A. Recruitment of new sites of synaptic transmission during the cAMP-dependent late phase of LTP at CA3-CA1 synapses in the hippocampus. Neuron 19, 635–651 (1997).

  3. 3

    Buchs, P. A. & Muller, D. Induction of long-term potentiation is associated with major ultrastructural changes of activated synapses. Proc. Natl. Acad. Sci. USA 93, 8040–8045 (1996).

  4. 4

    Geinisman, Y., deToledo-Morrell, L. & Morrell, F. Induction of long-term potentiation is associated with an increase in the number of axospinous synapses with segmented postsynaptic densities. Brain Res. 566, 77–88 (1991).

  5. 5

    Geinisman, Y. et al. Structural synaptic correlate of long-term potentiation: formation of axospinous synapses with multiple, completely partitioned transmission zones. Hippocampus 3, 435–445 (1993).

  6. 6

    Geinisman, Y., Detoledo-Morrell, L., Morrell, F., Persina, I. S. & Beatty, M. A. Synapse restructuring associated with the maintenance phase of hippocampal long-term potentiation. J. Comp. Neurol. 368, 413–423 (1996).

  7. 7

    Hosokawa, T., Rusakov, D. A., Bliss, T. V. & Fine, A. Repeated confocal imaging of individual dendritic spines in the living hippocampal slice: evidence for changes in length and orientation associated with chemically induced LTP. J. Neurosci. 15, 5560–5573 (1995).

  8. 8

    Sorra, K. E. & Harris, K. M. Stability in synapse number and size at 2 hr after long-term potentiation in hippocampal area CA1. J. Neurosci. 18, 658–671 (1998).

  9. 9

    Muller, M., Gahwiler, B. H., Rietschin, L. & Thompson, S. M. Reversible loss of dendritic spines and altered excitability after chronic epilepsy in hippocampal slice cultures. Proc. Natl. Acad. Sci. USA 90, 257–261 (1993).

  10. 10

    Murphy, D. D. & Segal, M. Regulation of dendritic spine density in cultured rat hippocampal neurons by steroid hormones. J. Neurosci. 16, 4059–4068 (1996).

  11. 11

    Gould, E., Woolley, C. S., Frankfurt, M. & McEwen, B. S. Gonadal steroids regulate dendritic spine density in hippocampal pyramidal cells in adulthood. J. Neurosci. 10, 1286–1291 (1990).

  12. 12

    Woolley, C. S., Gould, E., Frankfurt, M. & McEwen, B. S. Naturally occurring fluctuation in dendritic spine density on adult hippocampal pyramidal neurons. J. Neurosci. 10, 4035–4039 (1990).

  13. 13

    Fischer, M., Kaech, S., Knutti, D. & Matus, A. Rapid actin-based plasticity in dendritic spines. Neuron 20, 847–854 (1998).

  14. 14

    Ziv, N. E. & Smith, S. J. Evidence for a role of dendritic filopodia in synaptogenesis and spine formation. Neuron 17, 91–102 (1996).

  15. 15

    Maletic-Savatic, M., Malinow, R. & Svoboda, K. Rapid dendritic morphogenesis in CA1 hippocampal dendrites induced by synaptic activity. Science 283, 1923–1927 (1999).

  16. 16

    Engert, F. & Bonhoeffer, T. Dendritic spine changes associated with hippocampal long-term synaptic plasticity. Nature 399, 66–70 (1999).

  17. 17

    Cho, K. O., Hunt, C. A. & Kennedy, M. B. The rat brain postsynaptic density fraction contains a homolog of the Drosophila discs-large tumor suppressor protein. Neuron 9, 929–942 (1992).

  18. 18

    Kornau, H. C., Schenker, L. T., Kennedy, M. B. & Seeburg, P. H. Domain interaction between NMDA receptor subunits and the postsynaptic density protein PSD-95. Science 269, 1737–1740 (1995).

  19. 19

    Kistner, U. et al. SAP90, a rat presynaptic protein related to the product of the Drosophila tumor suppressor gene dlg-A. J. Biol. Chem. 268, 4580–4583 (1993).

  20. 20

    Kim, E., Niethammer, M., Rothschild, A., Jan, Y. N. & Sheng, M. Clustering of Shaker-type K+ channels by interaction with a family of membrane-associated guanylate kinases. Nature 378, 85–88 (1995).

  21. 21

    Ziff, E. B. Enlightening the postsynaptic density. Neuron 19, 1163–1174 (1997).

  22. 22

    Kim, E., Cho, K. O., Rothschild, A. & Sheng, M. Heteromultimerization and NMDA receptor-clustering activity of Chapsyn-110, a member of the PSD-95 family of proteins. Neuron 17, 103–113 (1996).

  23. 23

    Rao, A. & Craig, A. M. Activity regulates the synaptic localization of the NMDA receptor in hippocampal neurons. Neuron 19, 801–812 (1997).

  24. 24

    Rao, A., Kim, E., Sheng, M. & Craig, A. M. Heterogeneity in the molecular composition of excitatory postsynaptic sites during development of hippocampal neurons in culture. J. Neurosci. 18, 1217–1229 (1998).

  25. 25

    Craven, S. E., El-Husseini, A. E. & Bredt, D. S. Synaptic targeting of the postsynaptic density protein PSD-95 mediated by lipid and protein motifs. Neuron 22, 497–509 (1999).

  26. 26

    Arnold, D. & Clapham, D. E. Molecular determinants for subcellular localization of PSD-95 with an interacting K+ channel. Neuron 23, 149–157 (1999).

  27. 27

    Heim, R., Prasher, D. C. & Tsien, R. Y. Wavelength mutations and posttranslational autoxidation of green fluorescent protein. Proc. Natl. Acad. Sci. USA 91, 12501–12504 (1994).

  28. 28

    Fukaya, M., Ueda, H., Yamauchi, K., Inoue, Y. & Watanabe, M. Distinct spatiotemporal expression of mRNA for the PSD-95/SAP90 protein family in the mouse brain. Neurosci. Res. 33, 111–118 (1999).

  29. 29

    Migaud, M. et al. Enhanced long-term potentiation and impaired learning in mice with mutant postsynaptic density-95 protein. Nature 396, 433–439 (1998).

  30. 30

    Woolley, C. S. & McEwen, B. S. Estradiol mediates fluctuation in hippocampal synapse density during the estrous cycle in the adult rat. J. Neurosci. 12, 2549–2554 (1992).

  31. 31

    Bailey, C. H. & Kandel, E. R. Structural changes accompanying memory storage. Annu. Rev. Physiol. 55, 397–426 (1993).

  32. 32

    Ma, L., Zablow, L., Kandel, E. R. & Siegelbaum, S. A. Cyclic AMP induces functional presynaptic boutons in hippocampal CA3–CA1 neuronal cultures. Nat. Neurosci. 2, 24–30 (1999).

  33. 33

    Nguyen, Q. T. & Lichtman, J. W. Mechanism of synapse disassembly at the developing neuromuscular junction. Curr. Opin. Neurobiol. 6, 104–112 (1996).

  34. 34

    Kanegae, Y. et al. Efficient gene activation in mammalian cells by using recombinant adenovirus expressing site-specific Cre recombinase. Nucleic Acids Res. 23, 3816–3821 (1995).

  35. 35

    Kanegae, Y., Makimura, M. & Saito, I. A simple and efficient method for purification of infectious recombinant adenovirus. Jpn. J. Med. Sci. Biol. 47, 157–166 (1994).

  36. 36

    Miyake, S. et al. Efficient generation of recombinant adenoviruses using adenovirus DNA- terminal protein complex and a cosmid bearing the full-length virus genome. Proc. Natl. Acad. Sci. USA 93, 1320–1324 (1996).

  37. 37

    Niwa, H., Yamamura, K. & Miyazaki, J. Efficient selection for high-expression transfectants with a novel eukaryotic vector. Gene 108, 193–199 (1991).

  38. 38

    Okabe, S., Vicario-Abejon, C., Segal, M. & McKay, R. D. Survival and synaptogenesis of hippocampal neurons without NMDA receptor function in culture. Eur. J. Neurosci. 10, 2192–2198 (1998).

  39. 39

    Okabe, S., Miwa, A. & Okado, H. Alternative splicing of the C-terminal domain regulates cell surface expression of the NMDA receptor NR1 subunit. J. Neurosci. (in press).

  40. 40

    Papa, M., Bundman, M. C., Greenberger, V. & Segal, M. Morphological analysis of dendritic spine development in primary cultures of hippocampal neurons. J. Neurosci. 15, 1–11 (1995).

Download references

Acknowledgements

We thank Y. Kanegae and I. Saito for materials used in adenovirus construction. This work was supported by grants from the Agency of Industrial Science and Technology and Special Coordination Funds of the Science and Technology Agency of the Japanese Government.

Author information

Correspondence to Shigeo Okabe.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Okabe, S., Kim, H., Miwa, A. et al. Continual remodeling of postsynaptic density and its regulation by synaptic activity. Nat Neurosci 2, 804–811 (1999). https://doi.org/10.1038/12175

Download citation

Further reading